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Abstract

Harmonic maps frons? to $2 are all weakly conformal, and so are represented by rational
maps. This paper presents a study of Eametricy on M,, the space of degreeharmonic maps
52 — §2, or equivalently, the space of rational maps of degrel is proved thaty is Kéhler
with respect to a certain natural complex structure gn Whe case: = 1 is considered in detail:
explicit formulae fory and its holomorphic sectional, Ricci and scalar curvatures are obtained, it is
shown that the space has finite volume and diameter and codimension 2 boundary at infinity, and
a certain class of Hamiltonian flows onNé analysed. It is proved thad,,, the space of absolute
degreen (an odd positive integer) harmonic maR#2? — R P2, is a totally geodesic Lagrangian
submanifold of M, and that for alk > 3,M,, is geodesically incomplete. Possible generalizations
and the relevance of these results to theoretical physics are briefly discussed.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In theoretical physics, one often regards harmonic nidg) — (N, k), from a Rie-
mannian manifold of dimension 2, as static solutions of the so-called nontineadel on
space—tim&M x R, i), wheren = dr? — g is the Lorentzian pseudometric. Those harmonic
maps which minimize energy within their homotopy class are usually called “lumps” in this
context, because generically their energy density is localized in lump-like structures dis-
tributed overM. In many cases of interest, the homotopy classes of mapd — N are
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labelled by the topological degreegyfand the moduli space of static degrdamps, M,, is
a smooth, finite-dimensional manifold. There is a natural Riemannian metrig pmelvhely
the L2 metric, which assigns to each pair of tangent veclrg e TyM, C I'(¢*TN) the
inner product

where di, denotes the area measure(df g). The physical interpretation of this metric is
that it is the restriction to Iy of the symmetric bilinear form defined by the kinetic energy
functional of the parent-model. Note that, unlike the harmonic map energy, the kinetic
energy (and hencg) depends omg, not just the conformal class gf

This paper presents a study of this metric in the cddes N = S2andM = N =
R P2 with their canonical metrics. These cases are convenient because one has complete,
explicit parameterizations of the harmonic maps in terms of rational functions. We will
focus particularly on the simplest nontrivial case, degree 1 nsdps> $2, obtaining a
quite thorough understanding of ifs* geometry. The choic& = $2 or RP? is rather
natural from the stand-point of physics since the order parameters of ferromagnets and
nematic liquid crystals arg?- andR P2-valued, respectivel[86]. Previously, the algebraic
topology of spaces of rational maps has been studied by §ddand Guest et a[9], and
the algebraic topology of spaces of harmonic msps> $” and$? — RP™ by Furuta
etal.[7]. The differential topology of spaces of harmonic m&ps— $%” and$s? — CP"
has been studied by Bolton and Woodw§Btand Lemaire and Woo[.9], respectively.

The present paper may be considered complementary to this body of work.

The physical motivation behind this study is tkamodel lumps are in many ways anal-
ogous to topological solitons in relativistic gauge theories, such as BPS monopoles and
Abelian Higgs vortices. In th§? case, for example, lumps attain a Bogomol’nyi type topo-
logical lower bound on energy within their homotopy class, and consequently satisfy a first
order “self-duality” equation (namely, the Cauchy—Riemann equation). Manton conjectured
[22] that the slow motion o BPS monopoles is well approximated by geodesic flow with
respect to theé.? metric on the:-monopole moduli space. This conjecture was extended to
lumps by Ward37], and has since been formulated and proved rigorously for monopoles
and vortices by Stuaf84,35] The metric in the case = 2, M = R?, N = §? was inves-
tigated numerically by Leegé8]. So the physical motivation behind the present work is
the hope that thé& 2 metrics will shed light on slow lump dynamics in the paresnodel,
as the Atiyah and Hitchifil] and Samol$30] metrics have done for monopole and vortex
dynamics. Of course, they remain interesting and natural geometric structures in their own
right.

The rest of the paper is structured as follows. Let,M € Z, denote the space of
degreen harmonic mapss2 — $2. In Section 2 we give a simple, concrete proof that
(M,,, y) is Kahler with respect to the complex structure induced by a natural open inclusion
M, c CP?"+1 This result was previously conjectured (in a rather more general setting)
by Rubacl{28], who gave a very persuasive formal argument in its favougdation 3we
show that the K&hler property, along with the isometry group, almost completely determines
the L2 metric on M. Specifically, we show that any K&hler metric on Mvariant under
the isometry group of is determined by a single function of one variable, rather than 21
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functions of six variables, as for a generic metric in six dimensions. An explicit formula for
y is given, and it is shown that Malthough noncompact, has finite volume and diameter.
Itis shown also that the boundary @1, y) at infinity has codimension 2.

In Section 4the curvature properties of Mire studied. Explicit formulae for the holomor-
phic sectional curvatures of a certain unitary frame and for the Ricci and scalar curvatures
are derived. It is shown that the holomorphic sectional and scalar curvatures are unbounded
above, and conjectured that the Ricci curvature is positive definite. The relevance of these
results to quantum lump dynamics is discussed.

It is natural to regard the Kéhler fori®2 on M, as a symplectic form and study the
symplectic geometry ofM,,, £2). Such symplectic geometry has recently been used to
study vortex dynamics in a nonrelativistic version of the Abelian Higgs model, for example
[27]. In Section 5the most general physically meaningful Hamiltonian flow(bh, £2) is
analysed, and the corresponding one lump dynamics described.

In Section 6 we address the geometry of spaces of harmonic Rais— R P2. Eells
and Lemairg6] have shown that, if nonconstant, such maps are classified homotopically
by a certain odd positive integer, which we shall call the absolute degre8¢stien &for
a definition). InSection 6it is proved thatM,,, the space of absolute degredarmonic
maps, is naturally identified with a certain totally geodesic Lagrangian submanifolg,of M
where the symplectic form is again taken to be the Kahler form. Further, it is shown that
for all n > 3, M, is geodesically incomplete, whiM 1 is compact.

Finally, inSection Ave speculate on possible generalizations of this work. As an example,
itis shown that the.2 metric on the space of degree 2 elliptic functions is naturally K&hler.

2. The Kéhler property of M,

By the Hopf degree theoreffh0], homotopy classes of continuous mapss2 — S2 are
labelled by their topological degreee Z. A well-known argument of Lichnerowici20]
(rediscovered independently by physicists Belavin and Poly§&oand Wo0[40]) shows
that in the degree class the harmonic map energy satisi§g] > 2x|n|, with equality
if and only if ¢ is holomorphic £ > 0) or antiholomorphic{ < 0). Since harmonic
maps are by definition local extremals Bf (anti)holomorphic maps are harmonic, and
furthermore, minimize energy within their class. In fact, all harmonic n#ps> $2 are
(anti)holomorphid41]. Since degree and—n maps are trivially related by a change of
orientation (on domain or codomain), we may, and henceforth will, asaum®é without
loss of generality.

Introducing complex stereographic coordinaie® on domain and codomain, the gen-
eral degree harmonic map is

ai+axz + -+ ap417"

W(z) = )
ap+2 + ap3z + - - - + azp427"

2.1)

whereq; € C are constantsy,+1 andag,+2 both do not vanish, and the numerator and
denominator share no common roots. Spibithe space of degreerational maps. Clearly,
any point(éa, . . ., Eazpy2) € C¥12 & € C* := C\{0}, determines the same rational map
as(ai, ..., az42), SO one may identify each rational map with a pointi#?+1, This
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gives a natural open inclusionMc CP%**1 (not an identification, since the “no common
roots” condition removes a complex codimension 1 algebraic variety @@ 1) which

we use to equip Iwith a topology and complex structure. This topology is natural in that
it coincides with the relative topology of Mn C°(52, 52). The metric of interest doasot
derive from the inclusion M ¢ CP%+1, of course, but rather from definitiai.1). We
now establish the following theorem.

Theorem 2.1.For all n > 0, (M, y) is Kéhler with respect to the complex structure
induced by the open inclusiov, ¢ CP%*+1,

Proof. On the open set whewe, > # 0, we may introduce complex local coordinates
b* = ag/az2,0 =1,2, ..., 2n+ 1. We may always arrange tha, 2 # 0 by a rotation
of the codomain, so it suffices to show thdt Kahler in this coordinate system. Explicitly,

Y = yap db® db”, 2.2)

where repeated indices are summed over, and

B dz dz 1 ow (oW 23
Yob = o W 222 L+ WID2 abo \ abP | :
b1+ b AU N n
_bhitbart 4 bpgaz 2.4)

buy2+ bpyaz+ -+ 2

Note thaty is manifestly Hermitian, that i3, = y.s. Hence, we only need to demonstrate
that
ep _ OVsp Vap _ Vas

e b’ 858 35'3

(2.5)
for all o, B, 8 [24]. In fact(2.5) follow immediately from(2.3) and (2.4provided one may
interchange the order of partial derivative and integrabig /db°. But this is an immediate

consequence of the following lemma, whose proof is presentagpendix A

Lemma 2.2. Let X be a compact Riemannian manifpld : X x (—e¢, €) — R be smooth
and f : (—¢, ) — R such that

flx) = / F(-, x).
X
Then
70 = [ R0,
X
whereF, : X x (—¢, €) — R is the partial derivative of with respect to the second entry

Applying this to the integrand of2.3), with x representing the (real or imaginary part
of) any of the coordinates”, the result is proved. O
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Before specializing to the cage= 1, we note two facts about M First, (M,,, y) is
geodesically incomplete. This is a special case of a more general [Z3ulSecond, both
domain and codomain spheres are isometric under the group of rotations and reflections
of R3, O(3) = SO(3) U SO3). HereSO(3) denotes the orientation reversing component.
The induced action of @) x O(3) on the set of continuous mapgé — S2 decomposes
0O(3) x O(I) into degree preserving and degree reversing components:

0@3) x O(3) =[(SOB) x SOB)) U (SOAB) x SOR3)] U[(SOR)
x SO(3)) U (SO3) x SO3))]. (2.6)

The degree preserving subgroup, callzitacts isometrically oiM,,, ). It is convenient
to defineP : M,, — M, such thatP : W(z) — W(z). ThenG = SO(3) x SO(3) x Zy,
whereZ, = {Id, P}. We shall denote the identity component®by Go.

3. The metric on Mq

In the casen = 1, the isometric action offp = SQO(3) x SO(3) described above has
cohomogeneity 1, that is, genefig orbits have codimension 1. This is most easily seen by
identifying Mz with PL(2, C). Note that the case = 1 is special in that degree 1 rational
maps are closed under composition, s Ms a natural Lie group structure, namely that
of the Mdbius group P2, C) = SL(2, C)/Z,. Explicitly, one identifies a rational map

W g KT a2 (3.1)
a1z +azz

with a projective equivalence class of @,.C) matrices,

[M] = {g(““ “12> :gecX}, (3.2)
az az
noting that map composition and matrix multiplication correspond under the identification.
Then the PW2) = SU(2)/Z, = SO3) subgroup of P2, C) consists of rotations a$2,
S0 in matrix languagé g acts on PI2, C) by left and right PW2) matrix multiplication.

A particularly convenient moving coframe for B2, C) is defined as follows. Let,, a =
1, 2, 3 be the standard Pauli matrices

01 0 —i 1 0
1= 1 0/ 2= N E 3= 0 -1 (3.3)

Then any M] € PL(2, C) has a unique polar decomposition
[M] = [Ul(Alz + A - 1), (3.4)

where U] = {£U} € PU2), A € R3, & = |A|, A = v/1+ A2 and- denotes th&3 scalar
product[25]. The moving coframe i&dx,, o, : a = 1, 2, 3}, whereo,, are the left-invariant
1-forms on PU(2) associated with the basj2z, : a = 1, 2, 3} for su2) = Tj,) PU(2). So

M1 = PU(2) x R® as amanifold (thoughotas a group). Physically, the lump parameterized
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by ([U], ) should be thought of as located-ak € 52 (wherei = A /1), with “sharpness”
A and internal orientation]]. The action of([L], [R]) € PU(2) x PU(2) = Ggon M; in
terms of the polar decomposition is

(L], [RD : (IU], M) = ([LUR], RA), (3.5)

whereR € SO(3) is the rotation corresponding t®] € PU(2) (explicitly, it has matrix
componentsRy, = (1/2) tr(raRTrbR)). From this, one sees that thi&) action indeed
has cohomogeneity 1, the orbits being level seta.ofhe orbit space M/ Go may be
identified with the radial curvé™ = {([I2], (0, 0, 1)) : A > 0} of rational maps¥, : z —
w(M)z, whereu(r) = (A + )2 There is one exceptional orbit, namely= 0, which has
codimension 3.

The main aim of this section is to obtain an explicit formula forby applying the
following proposition.

Proposition 3.1. Lett be aG invariant symmetri¢0, 2) tensor oM 1 which is Hermitian
(z(IX, IY) = (X, 1)), and whose/-associate®-form 7 (z(X, Y) := 7(JX, 1)) is closed.
Then there exists a smooth functidn [0, co) — R such that

T=A10dr-dA + Ao(A - dA)2 + A30 -0 + Aa(A - 0)° + Ash - (o0 x dA), (3.6)
where
AN A 1+ 22
1=AQ), 2=13,72 P 3 ( 7 > ),
2
Ag = (1:; )A’(A), As = AL, 3.7)

A’ denotes the derivative of, x the R? vector product and juxtaposition of covectors
denotes symmetrized tensor product

Proof. We first show that the most genef@} invariant symmetric0, 2) tensor on M is

T=A10A-dA + As(A - dA)2 + A30 -0 + Aa(h - 0)° + Ash - (¢ x di)
+ Ago - dA + A7(A - dV)(A - o), (3.8)

whereAs, ..., A7 are functions of. only.
Thus such a is Gg invariant follows from the pulled back action 6fy on our moving
coframe:

(L], [RD : (dr, o) > (RdA, Ro). (3.9)

We may prove tha3.8) is the most generalig invariant symmetric (0, 2) tensor possi-
ble by means of the representation theory of( 80 Any such tensor is uniquely deter-
mined by the 1-parameter family of symmetric bilinear forms V; & Vi — R, where
Vi = Tw,M1, and eachr, must be invariant under the isotropy groip < Gg of W,.
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Explicitly,

1)) ()] o] 500 -

(UL VD : [U] € PSU2)} = SOB), A =0.
(3.10)

The induced action aff, on V;* ® V;* leaves the subspaces of symmetric and antisymmetric
bilinear forms invariant, that is, preserves the splitting

VieVi=[VioVile[ViAaVil=V eV,. (3.11)

One may compute the dimension of the subspadg*obn which H, acts trivially (i.e. the
subspace off;, invariant symmetric bilinear forms) by counting the number of copies of
the trivial representation in the decompositior{ &, , Vf) into irreducible representations,
using character orthogonaligg. (3.8)captures all possibilities if and only if this dimension
is 7 forA > 0 and 3 forr = 0.

Consider first the generic case,> 0, H, = SO(2). The H, action onV, has matrix
representation

cosy siny O 0 0 0
—siny cosy O 0 0 0
RY) = 0 0 1 0 0 0 (3.12)
B 0 0 0 cosy siny O '
0 0 0 —siny cosy O
0 0 0 0 0 1
relative to the ordered basig/orq, . . ., 63), where{6,} are the left-invariant vector fields
dual to{o,}. Hence the character: H, — R of this representation is
x() =tr R(Y) = 2+ 4cosy. (3.13)

The character of the induced representation of30n V;t is[11]

1
Je () = S ([ R(Y]% £ r[RW)?)

7+ 8cosy +6cosdy, symmetric

= ) ) (3.14)

5+ 8cosy + 2cos 2y, antisymmetric
We shall make use of the result {9 when analysing the-associated 2-forn. Since
SQ(N) is a compact Lie group, the characters of inequivalent irreducible representations
are orthogonal functions on $®) with respect to the Haar measure. One may therefore
extract the coef‘ficienatojE of the trivial characterp() = 1) from the decomposition

= a (3.15)
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of x+ into irreducible representations by taking the character inner product of both sides of
(3.15)with o

i [ dud= [ dunon (3.16)
SQN) SAN)
where d¢ is the Haar measure. For SO(2)4 & dv/2m, so
2T dyr 7, symmetric
:t ~ )
= — 3.17
% = | Xi(w { 5, antisymmetric (3.17)

in agreement witl§3.8).
In the special casg = 0, the isotropy group iglp = SQO(3) whose action orV, has
matrix representation

(o) 0
R(w,n)—< . ow,ﬁ))’ (3.18)

where(y, i) parameterizes the rotation through anglabout axisi € $2 andO(y, i) is
the associated SO(3) matrix. The character of this representation is

x(W, h) = 2tr Oy, i) = 2(L+ €V + eV) = 2+ 4 cosy. (3.19)

It follows from (3.13), (3.14) and (3.13)at the characters of the induced representations
on Vi are the same trigonometric functiofs (1) above, independent @f Once again,

we may extractaz0 using character orthogonality, but now we must integrate over SO(3)
using the Haar measure, which is

du = - smzf (3.20)

after integrating ovest [12]. The result is

1 (% Ly 3, symmetrig
+ 2¥ -
== dy sin®= = . . 3.21

R v 2 W) { 1, antisymmetric (3.21)

which proves the initial claim.
Sincer is G invariant (not merelys invariant), it must also be invariant under the discrete

isometry P, which in matrix terms isP : [M] — [M] (entrywise complex conjugation).
The pull-back action on the moving coframe is

P*: (dA, o) = (dA1, —dAo, dA3, —01, 02, —03), (3.22)

implying thatAg = A7 = 0.

It remains to show that the coefficient functiofis, .. ., As are determined by the single
function A as in(3.7). This follows from Hermiticity oftr and closure of. Recall that the
complex structure on Mis inherited from the open inclusionMc C P3. For example, on
the open set where; # 0 (Eg. (3.1), we may use the inhomogeneous coordinates

a2 a1 a2
all airl ail
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to define a complex coordinate chart. This chart contains the clirwe are using to
parameterize the orbit space MGo. Itis a simple matter to write down the almost complex
structureJ-associated with this complex structure, in terms of the biggg\,, 6, : a =

1, 2, 3} for V,, namely

;.0 2 () %0 ;.0 2, B0
— > = -, — > = -——,
ny A 2 00y ha A\ 2T 25,
g2 24 J:6 L3 e
P — > —03, 0> - — — ,
s A ! 24 \ 9 2
1/ 9 A D
T —— (- 4 2061). T3> —=-2. 3.24
27 724 <8A2+ 1) S T o (3.24)

We emphasize thgB.24)is valid only on tangent spaces based at points on the durve
By G invariance oft, this will be all the information we need.
Hermiticity of 7, 7, (IX JY) = 7 (X, Y) for all X,Y € V,, produces two nontrivial

constraints on the coefficientsy, .. ., As, hamely,
A —A1~|—A2A A1+ 224, = (A3 + 22Ay) (3.25)
3= 5 45 1 2= 1122 3 4). .

Let f € G, and denote by the same symbol its action ofy ¥1: M1 — M1. The 2-form
7(-,-) = =(J-, ) isinvariant, f*T = 7, under any holomorphig¢ € G since f*t = 7 (G

invariance ofr) and dfw o Jw = J¢w) o dfw (holomorphicity). Similarly,f*z = —1 for

antiholomorphicf € G. Now eachf € Gg is holomorphic, s@ is G invariant. We claim
that the most generalg invariant 2-form on M is

t=A1dr -0 —0 -dA) + Aa((A-dA)(A -0) — (A -0)(A-dX)) + Ash - (0 x 0)
+ Agh - (dA x dA) + As(dr - (A x o) — (A x o) - dA), (3.26)

whereAy, ..., As are functions of. only, and juxtaposition of 1-forms indicatessym-
metrizedtensor product. Clearly, such a 2-form@ invariant by(3.9), and is the most
general such form possible §$.17) and (3.21)In fact, sinceP : [M] > [M] is antiholo-
morphic, P*? = —%, and we may immediately conclude thag = 0.

_ Itisasimple matter to match(-, -) with 7, (J-, -) onV, using(3.24) and hence determine

A1, ..., Aginterms ofAq, ..., As. The resultis
A=24 Ay =24 A—l(A+4A) A—/\(A A1)
1= 541 2= 542 3= A1 3), a=—s 1)

(3.27)

Closure oft then gives extra constraints on the metric coefficiefits. . ., As. Using the
standard exterior differential algebra for the left-invariant 1-forms of SO(3),

dUl = 02 N\ 03, do’z = 03 N\ 01, d(73 = 01 N\ 02, (3.28)
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one finds that at anyy,, € I',

dr = (A;_ — )\Az) diz A (dA1 A o1+ dro A 02)
+ (A3 - Al)(dkl ANop Ao3+dix Aoz Aol+diz Ao Aoc2)

+ )»(A; — )\Az) diz A o1 Aoo+ ()»A; + 3A4) di1 A diz A drs. (3.29)
Hence, ¢ = O if and only if
Al = A3, A/l = )»Az, A4 =0, (3.30)

the last of these following from nonsingularity éfat A = 0. Rearranging these using
(3.27)and the Hermiticity constraint8.25), one finds that all the metric coefficients are
determined by the single smooth functian = A(L) as in(3.7). O

Corollary 3.2. TheL? metric onM1 is
y=A1dx - dA + As(A - dA)2 + A30 -0 + Aa(A - 0)° + Ash - (6 x dA),

whereAq, ..., As are functions of only, determined as i§3.7) by the single function
4 4 _4u’logp —1
A [ — 4ulogu ], (3.31)
(n? —1)3

wherep = (v/14 12 4+ )2

Proof. By Theorem 2.1y is Hermitian and its/-associated 2-form (the Kahler form,
henceforth denoted?, rather thany) is closed. Furthermorey is G invariant. Hence
Proposition 3.lapplies. The formula for is obtained by computing; (9/0A1, 9/0A1)
using(3.7). O

Given a tensot satisfying the hypotheses Bfoposition 3.1it is convenient to define a
second coefficient functioB(1) := 1, (63, 63). Of course B is determined by, according
t0 (3.7)

1+ 222 A+ 23
B(\) = A3+ A2As = +4 A\ + z A'(L). (3.32)
One finds forr = y, the L2 metric, that
APl (u? 4+ Dlogu — u? +1
P [((u”+Dlogp — u” + ]' (3.33)

(n?—-13

An explicit formula fory has previously appeared in the physics literaf@&, although

its Kéhler property and the resulting interdependence of the coefficient functions was not
understood, nor was a rigorous classificationGoinvariant tensors on Mperformed.

The geodesic flow 01iM1, y) has been extensively studied, alsd32], revealing quite
complicated lump dynamics. We finish this section by examining the latgghaviour of

y. Specifically, we will prove thatM1, y) has finite volume and diameter, and describe its
boundary at infinity.

Theorem 3.3. (M1, y) has finite volume and diameter
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Proof. The volume form is

A
Vol = EBAZ diy Adix AdA3 Aol A0 A O3, (3.34)
Hence,
o0 V1422
Vol(M1, y) = 47 Vol (SO(3)) / da A2 ;’ BAZ

00 2
:—VoI(SO(3)) / du ( - %) BA2

3 2
< ¢+ 73VoI(SO3)) / A e (24'0#) (2—> , (3.35)
2 I i

wherec is a constant (the volume from = 1 to 2). HencgM1, y) has finite volume.
One may similarly bound the diameter@®fl1, y),

diamMy, y) ;== sup d(Wz, Wp). (3.36)
Wy, WoeMq

By the triangle inequality,

diam(My, y) < 2 sup d(W, Id). (3.37)
WeM1

The distance of any majy from Id is bounded above by the sum of the length of the radial
curve from([U], 1) to ([U], 0) and the distance in SO(3) frorty] to [I] with respect to the
bi-invariant metricA3(0)o - o. The latter contribution is bounded independent@f by
compactness of SO(3), and the former is,dayinvariance, bounded above by the length
of the curverl". But

length(IN = foo div AL+ A245
_/ “Jﬁ<c+8ff VIOg“<oo. (3.38)
1

Hence(M1, y) has finite diameter. O

For both estimates, the key point is thaty) and A’(1) decay sufficiently rapidly as
A — oo to guarantee convergence of the integrals. Note that while &véryariant Kéhler
metric on M is determined by a single functiof(}), the converse is false: not evety)
defines such a metric since one must also demand/thatpositive definite. This places
one nontrivial constraint oA

a9 A 1+ 2)2
A IR PN e i 3.39
”(axa axs> VT AT T R (3.39)

and one trivial constraintd > 0), which together bound the decay rateAgh) asi — oo.
Integrating inequality3.39)yields, for example,
V2A(1)

AA) > ———— VA >1, 3.40
V1422 (340)
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so the decay ofl cannot be faster than(@/A A). Itis interesting to note that the asymptotic
behaviour of the.2 metric saturates this bound, namely Jim, AAA = 7.

As shown above, the boundary @¥11, y) at infinity lies at finite proper distance, so
the space is geodesically incomplete. One expects, however, that generic geodasics do
escape to infinity, since the boundary has codimension 2, as we now show.

Theorem 3.4. The boundary at infinity ofM1, y) is diffeomorphic tas? x S2.

Proof. Theideaistoanalyse the 1-parameter family of homogeneous metricy8pS§3
induced byy, using the cohomogeneity 1 property. Consider the pullback by the left coset
projectionw;, : G — G/H(A) — Mj of the metricy. The orbit itself (level set of

A € [0, c0)) may be identified with the quotient 6f by the subgroup generated by the null
space ofz}y) 1 1) (the isotropy grougH (i) of W), by nondegeneracy gf). With respect to

the basig#;, 0), (1, —61), i = 1, 2, 3 for T{; 1) G, this bilinear form has coefficient matrix

3(A%2+22)4A 0 0 0 x4 0

0 (A2 42294 0 —2xA 0

[Ty apl = ° ° oo °
’ 0 —3AA 0 224 0 0

irA 0 0 0 24 0

0 0 0 0 0 0

We seek to construct the."= oo” orbit. As A — oo, the matrix above converges to
T T
dia (—, —, 0, 7, m, O) ,
922

whose null space generates the toric subgroup

T? = {([exp(izarg)] , [exp(%ﬂm)D ‘o, B e R} .
Henced(M1, y) = G/T? = §2 x §2. O

Remark 3.5. The identificatiord(M1, y) = $2 x S2 is natural in two senses. First, the set
of pointwise limit mapso, : S2 — $2, obtained by taking the — oo limit of the ([U], A)
rational map, is naturally in bijective correspondence Wihk $2. To specify such a limit
map one must choose a pojnin the codomain, to which almost every point in the domain
is mapped, and a point in the domain, which alone is mapped to the antipodal ppint to
Second, the complex codimension 1 algebraic variety complementarytinRap3, as
described irSection 2is diffeomorphic tas? x S2. Indeed, itis the image of the holomorphic
embeddingC P! x CP* — CP3, ([x1, x2], [y1. y2) = [x1y2, X1y1. x2y2, x2y1].
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4. Curvature properties
4.1. Holomorphic sectional curvature

Recall that the sectional curvature of a plahe Grx(TwM31) is
o(X,Y) = (R(X, V)Y, X}, (4.1)

whereX, Y are orthonormal and spam, (-, -) = y(-,-) and R is the Riemann curvature
tensor[38]. Recall also that, sincg is Hermitian,y(X, JX) = 0 and||JX|| = || X||, SO one
may assign to a liné, € Gri(TwM1) containingX, || X|| = 1, the holomorphic sectional
curvature

Hol(X) := o(X, JX). (4.2)

In fact, given thaty is Kéhler, Hol uniquely determinesand hencer [13].
We shall compute the holomorphic sectional curvature of the unitary ffamée, : a =
1, 2, 3} for V,, where

1 9 1 0 1 0
e1 = ——, e = ——=—, 3=
A1 01 /A1 0A2 /A1 + A2A, 0A3

Hermiticity implies that Hol{X) = Hol(JX), and G invariance implies that Ho¢1) =
Hol(e2), so we shall calculate only H@) and Holes). These will vary with basepoint
W, € I', and hence be functions af

The simpler of the two is Héé3):

(4.3)

4 0
Hol = V902 Vo603 — V.V 603 — V, 63, —
(e3) (1+A2)(A1+A2A2)2< 3/9r3 Vo303 — Vo3 V01503 [8/023,03]03 8A3>
4

(1+ 22)(A1 + A2A2)?

a 9 P
Vi, 0 ,— ) —({V, 0 s \Y R V93 .60 2
X {3)»3< 03Y3 3k3> < 03U3, Vi/or3 3)»3> + | 3/0s 3| }

1+22 (B 3
=Y (5 m2) 77 44

To obtain(4.4), we have used metric compatibility and torsionlessnesg,deft SO(3)
invariance ofy and the Lie algebra $8) & R3, namely,

ad ad d
—, —|==—,6,| =0, [64,65] =— . 4.5
|:3)»a a)\bi| |:3)»a bi| [64, 6p] €abde (4.5)
Formula(4.4)may be written in terms od alone usindg3.32) but the result is rather messy.
Due to the more complicated expression Jer, in comparison withles (see(3.24)),
the calculation of Hdl1) is considerably lengthier, though no more technically difficult.
We merely record the result, which, unlike Ke&j), simplifies somewhat when expressed
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(a) (b) (c)

0.39 50 100
40 80

0.38 Hol(e,) Hol(es) Scalar
30 60

0.37
20 40

0.36
10 20

0.35 0 0

0 5 10 0 5 10 0 5 10
A A A

Fig. 1. Plots of various curvature functions against the radial coordinée the L2 metric on M. Note the
unboundedness of H@k) and« (scalar curvature).

purely in terms ofA:

Hol(e1) =

1 AA+ FA2A 2 2+A2A 3+2,\2A/
A2AZ | (AZ+22)A +2A2A7 \ A2 1422 2\ '
(4.6)

Substituting formulaé3.31) and (3.33for A(A) andB(1) into (4.4) and (4.6)one obtains
(very complicated) explicit expressions for K@) and Hol(e1). Plots of these are presented
in Fig. 1 Note that, although H@é1) is bounded, Haks) is unbounded above. In fact, one
finds (using Maple, for example) that

(log2)3
)»4

. 1 1
lim Hol(er) = =, Hol(e3) = —, 4.7)
A—00 T A

A—00

which proves the following theorem.

Theorem 4.1. The holomorphic sectional curvature@ 1, y) is unbounded above. Hence
no isometric compactification @M1, y) exists despite its finite volume and diameter

4.2. Ricci curvature

Recall that the Ricci curvatuygeof a Riemannian manifold is the symmetric (0, 2) tensor
p(X,Y) :=tr(V > R(V, X)Y), (4.8)

whereR is the Riemann curvature tensor, as befdd.

Proposition 4.2. Let y be a G invariant Kahler metric onM4, determined as in
Proposition 3.y the functiond. Then the Ricci curvature @M1, y) is

p=Ardr-dr+ Ax(A - dA)2 + A30 - 0 + As(h - 6)% + Ash - (¢ x dA), (4.9)
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whereAy, ..., As are functions of. only, determined as if3.7) by the single function

20.(1+32)(A)? + (90% + HAA + 4(1+1D)AN + 447

A——
20A(A + 224 + A’ + A34)

(4.10)

Proof. Since theG action is isometricp is G invariant. Furthermore, sincg is Kah-
ler, p(IJX, JY) = p(X,Y) [15], and the associated Ricci form,is closed[16]. Hence,
Proposition 3.Japplies top just as it applies ter, and all the coefficient functions are deter-
mined byp; (8/0r1, 8/9r1) = A(A). But p, (3/9r1, 3/01r1) is determined byd according
to Eqg. (4.8) which yields formulg4.10) O

As with the metric, it is convenient to define the associated coefficient function

14 222 A+ 23

B(\) := py.(03, 03) = Az + 1244 = AW + A'(). (4.11)

An explicit formula for the Ricci curvature of the? metric is obtained by substitutirfg.31)
into (4.10) Unfortunately, this formula is far too complicated to be instructive. However, it
leads us to the following conjecture.

Conjecture 4.3. The Ricci curvature of th&2 metric onM1 is positive definite

In support of this, note that, relative to the ordered béii&L1, 62, 3/9)2, 01, 3/ A3, 63),
the coefficient matrix op, is block diagonal with blocks

A A
1 -5 1 > 4 0

A . A ., B 1+22 . (4.12)
A 1+222 A 1+222 0 1
2 4 2 4

whence it follgws thap, is positive definite if and only iA(A) > 0 andB(%) > 0. Now
A(0) = 4 andB(0) = 1, sop is certainly positive definite in a neighbourhood of Id, and

lim A2A(L) = 4, lim (log2)?B(4) = 3, (4.13)
A—00 A—>00
s0p is asymptotically positive definite also. Convincing graphical evidence in favour of the

conjecture is presented Fig. 2, which contains plots oA andB.
We note in passing that the Einstein field equationgfanvariant Kéhler metrics

p =gy (4.14)

reduce to a single second order nonlinear ODE, explicit solutions to which may be con-
structed in the Ricci flat case. The results will be described in detail elsewhere.

4.3. Scalar curvature

While Hol andp are not directly relevant to soliton dynamics, the scalar curvature
certainly is, at least in the quantum regime. The standard approach to low energy quantum
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(a) (b)

10 0 2 4 6 8 10

Fig. 2. Plots of the coefficient functions of the Ricci curvaturg:dh) A (1) and (b)B(1). Note that both are positive
within the plot domain, and that for > 4, they are very close to the asymptotic forms & and [logx)~?]/8,
respectively (the dashed curves).

n-soliton dynamic$8] is to assume that the quantum state is well described by a wavefunc-
tion on then-soliton moduli space/ : M,, — C (which receives the usual probabilistic
interpretation) subject to a Schroédinger equation of the form

i% = —%Ayw + Wy, (4.15)
whereA, is the covariant Laplacian ofM,,, y) andV : M,, — R is a potential function.
The question of precisely what terms should be included i somewhat controversial,
and the answer likely varies according to exact context. However, there seems to be general
agreement that, following De Wifb], one should include (a positive multiple afjn V.
For a recent discussion of this subject, specifically in the contextmbdels, se¢23].
So the relevance of to quantum lump dynamics, as well as simple geometric curiosity,
motivate us to calculate it.

Proposition 4.4. Let y be a G invariant Kahler metric onM4, determined as in
Proposition 3.y the functionA(1). Then the scalar curvature gM1, y) is

A _B
=4~ 422, 4.16
e=A4-+24 (4.16)

v_vhereA and B are determined by as in Eqs(4.10)and (3.32) and B is determined by
A asin Eq.(4.11)

Proof. By G invariancex is a function ofi only, so it suffices to compute it &, € I".
Making use of the unitary framge,, Je, : a = 1, 2, 3} and recalling thap(JX, JY) =
p(X,Y), one finds

3
K= zzp(ea, €a) =2

a=1

A1 A1+ 2%A
[2_1 A1+21742 2} , (4.17)

A1 A1+ AA>
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in the notation oProposition 4.2Formula(4.16)follows from applying the relation$.25),
(3.32), (4.11)—(4.17) O

Corollary 4.5. The scalar curvature of th2 metric onM1 is unbounded above

Proof. FromEgs. (3.31) and (3.33)ne has the limits

lim A2A() = 7 im By =2 (4.18)
=00 - r—oo log A 2 .
which together witH4.13)andProposition 4.4mply that
. (logn® 1
AILmoo K=o O (4.19)

Remark 4.6. Numerical evidence suggests that ftfemetric on M, has strictly positive
scalar curvature (sd€g. 1), as one would expect, givebonjecture 4.3

Since(M3, y) is noncompact, but of finite volume, the question of what boundary con-
ditions to impose on the quantum wavefunctipmat A = co when seeking bound states is
nontrivial. The fact that — oo asA — oo supports the imposition of vanishing boundary
conditions for all quantum states of finite energy. One would expect the quantum 1-lump
energy spectrum to be discrete, therefore.

4.4, The Fubini—Study metric

There is another natural Kéhler metric on Miven by the open inclusion Mc CP3,
namely the Fubini—Study metric diP2. In terms of the local inhomogeneous coordinates
b1, ba, b3 (3.23)this takes the fornfi39]

o (U X 1bal) A+ 3 dby dby) — (3 ba dba) (32 by Uby)

4.20
1+ 2 1bal?)? (4.20
Proposition 4.7. The Fubini—Study metric oMl is
ves= A10A - dA + Ao(A - dA)? + A30 -0 4+ Aa(A - 0)% + As) - (0 x dA),
A1, ..., As being determined as i(8.7) by the single function
21 (M)
Aps(A) = ———, 4.21
Fs(A) = 7 a2 (4.21)

wherep (L) = (V14 12 4+ 21)2.

Proof. The isometric action of PU(4) ofC P2, yrs) obtained by projecting the standard
U(4) action onC? contains the5 g action on M we have been considering. Furthermoss;

is manifestly invariant unde¥/ — M (i.e. b, — b,) from (4.20) HenceProposition 3.1
applies. It remains to computgs(A) = yrs(9/0A1, 9/011) atW, e I', using(4.20) which

is straightforward algebra. O
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Proposition 4.7gives us several checks on our curvature calculations. It is known that
(CP3, ygs) has constant holomorphic sectional curvature (i.e.(Mpls independent of
both X e 7,C P2 and base poinp), and is Einsteiri39]. So substituting4.21)into (4.4),

(4.6) and (4.16¥hould yield constants. This is easily checked. One finds,

Holrs(e1) = Holgs(e3) = 4, kFs = 48. (4.22)

Also, substituting4.21)into (4.10)demonstrates thatrs = 8Afs, as it should. This gives
us considerable confidence in the somewhat complicated expressions fpratoly.

5. Hamiltonian flows

The Kahler form2 is a closed 2-form, nondegenerate by nondegeneragyaofd hence
a natural symplectic form on M Associated with any smooth functidh : M1 — R there
is a Hamiltonian flow, defined as the flow along the smooth vector fgjddefined such
that

2, Xg) = dH(Y) (5.1)

for all vector fieldsY. Thinking of M; as the 1-lump moduli space, only ) x SQ(3)
invariant Hamiltonians make physical sensefsmust be a function of only.

Proposition 5.1. Let$2 be the K&hler form associated withGainvariant Kéhler metric on
M1, determined as iProposition 3.y A(1), and H(A) be a smoothG invariant function
onM1. The Hamiltonian vector field corresponding(@, H) is

2414+ A2H'()V) e

X = I 22400 + G+ 1AW

(5.2)

Proof. It is convenient to decompose vector fields relative to the moving frame
{0/0A1, ..., 63} using the notation

0 ~
Y=Y -—+Y-0, 5.3
ot (5.3)

that is, collecting the coefficients into a pairf-vector valued functions. Recall from the
proof of Proposition 3.1hat the Kéhler form is

R=A1r -0 —¢-dA)+ AsA- A A -0)+ AL (0 x 0), (5.4)
so the defining equation for the Hamiltonian vector figlg = X - 9/9A + X - 0 reads

ALY X =Y - X)+ Ao[(A-Y)A-X) = A -Y)A-X)] + A1x - (¥ x X)

H R . R 5
=AY VY= AX 4 A2 X0k + Ak x X =0, (5.5)

A o~ ~ ~ H’
AX + A X1 — -1 =0, (5.6)
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The pair(5.5) and (5.6)s easily solved foX, X, yielding

H A~
Xpy=—1r 3.0 (5.7)
A+ 2245
One now use$3.7) and (3.27Jo rewrite A1 and A in terms ofA. O

Flow alongX y corresponds physically to a lump which maintains constant shajpel
position—A, while spinning internally at constant speed about its axis. The variation of spin
speed and sense withdepends on the specifics BiA).

6. The space of harmonic map® P2 — RP2

We begin by recalling some relevant results of Eells and LenjéjreThe homotopy
classes of continuous mags: RP? — RP? fall into distinct families labelled by the
induced endomorphism of the fundamental grogp,: 71(RP?) — m1(RP?). Since
11(RP?) = Z,, there are two families, one for whigh is the zero morphismimaps all
loops to contractible loops), the other whexeis the identity morphism¢g maps noncon-
tractible loops to noncontractible loops). The zero morphism family contains two classes,
one of which is the trivial class. The identity morphism family contains infinitely many
classes. Any map in this family lifts  : $2 — 52,

52 _‘;_’ 52

‘| I+

RP? —*, RP? (6.1)

whererr denotes the covering projection, and the different classes are distinguished by the
absolute value of the degree ¢f which may take anpdd value. We shall refer to this
homotopy invariant as the absolute degiaeq of ¢.

Turning to harmonic maps, all but one of the homotopy classes described above contain
harmonic representatives. Again followifgj, if ¢ belongs to the zero morphism family,
it lifts to a map¢ : RP?2 — $2 which is also harmonic since the covering projection
7 : 82 - RP?is a local isometry. All harmonic maps froRP? to $2 are constant, so
the nontrivial class has no harmonic representative. The moduli space of harmonic maps in
the trivial class is thu® P2, and theL? metric on this space is a constant multiple of the
canonical metric. Ifp is harmonic and belongs to the identity morphism family, it lifts to a
harmonic map : S2 — $2 (again, because s a local isometry), and the space of these is
well understood in terms of rational maps. So the task is to identify those harmonic maps
¢ : 5% — 2 which factor through the quotient {#6.1). Let p : S> — 52 be the antipodal
map (p : z = —1/z in stereographic coordinates). Themrojects to a well-defined map
¢ :RP2 — RP?ifand onlyif¢ o p = p o ¢, or in terms of the associated rational map
W(z),

Wl t=we™. (6.2)
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We now note that given such a rational map, of degree 0 say, no other degreemap
projects to the samg, althoughW(—1/z), which has degreen, does. So we may identify
M,,, the moduli space ofded n harmonic map® P?> — R P2, with the subset of M on
which (6.2) holds.

Theorem 6.1. M,,, wheren > 1is odd is a totally geodesic Lagrangian submanifold of
(Ml’lﬂ J/» Q)
Proof. LetP : M,, — M,, such that

P:¢+ pogop. (6.3)
ThenM,, ¢ M,, is precisely the fixed point set 8f SinceP is an isometry ofM,, y), inthe

componenB8QO(3) x SO3), M, is totally geodesic if it is a submanifold (i.e. nonsingular).
ExtendingP naturally toC P2**+1, one finds that

P:lai, ..., ant1, ans2, - - ., a2n42]
_ _1- _ _ 1-
> [(—=D"aznt2, (=" 241, - .o —n43, An2, (—1)" a4,
(_1)nc_lnv R ZlZs _C_ll], (64)

which is manifestly antiholomorphic. HenBé&2 = — 2, and the Kéhler (symplectic) form
restricts to 0 on the fixed point set. $t, is a Lagrangian submanifold if it is nonsingular
and has (real) dimensiom2+ 1.

It remains to check tha¥l, is indeed nonsingular and has half the dimension pf M
short calculation in inhomogeneous coordinates demonstrates that the fixed poirfe set of
in CP%t1 is smooth with real dimensiom2+ 1 if n is odd, and is empty if is even (the
latter being a special case of the topological fact that no even degre§4maps? projects
to a mapRP? — RP?in (6.1)). This does not suffice for our purposes, however, since a
real codimension 2 algebraic variety must be removed fiaP*+ to yield M,. We must
verify, therefore, that the intersectionf, with this singular set has dimension lower than
2n + 1.

Since the question is local, we may work in a neighbourhood of any fixed gnap
and choose stereographic coordinates on the codomain which are projected from neither
#((0, 0, 1)) nor ¢((0, 0, —1)). Then, in a sufficiently small neighbourhood, all harmonic
maps have rational form

(z—z1)---(2—2n)

(e Fe—w) - G—wn) (63

whereu € C*. These should be thought of as parameterized baynd a pair ofinordered
n-tuples of complex numbergy;}, {z;} € C"/P,, P, being the permutation group on
n objects. Of course, in this contekt'/P,, = C" diffeomorphically through the global
coordinatega;}, where(z — z1) - - - (z — zn) =: 2" + a,2" "1 + - - - + a1. The singular set,
on which dedV < n, is that piece wheréw;} N {z;} # @. The fixed point set oP in this
neighbourhood consists of maps for which

1 1
{Zl,-..,Zn}I{—_—,-u,—_—}, (6.6)
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and
lul = lwiwz - - - wyl. (6.7)

Egs. (6.6) and (6.7dletermine a (2 4+ 1)-dimensional submanifold &< x [C"/P,] x
[C"/P,], parameterized bjw;} € [C*]"/P, and argu € S*. From this must be excluded,
if n > 3, the (2 — 3)-dimensional variety on whicty; = —1/w; for somei, j. This still
leaves a nonsingular 42+ 1)-dimensional fixed point set, as was to be proved. O

Note thatP is also an antiholomorphic isometrygfs, the Fubini—Study metric inherited
fromthe open inclusion i c CP?"*1. SoM, is atotally geodesic Lagrangian submanifold
of (M, yrs, S2rs) also, by identical reasoning. The metric induced\dj by y is more
interesting than that induced bys, however, since it coincides with the? metric onM,,.

The geodesic approximation ®P? lump dynamics oiR P? is thus a special case 0‘?
lump dynamics or$2.

It is clear from the proof above tha, is generically noncompact. The case= 1
is exceptional, however. Here, as describe@éction 3 one may identify a rational map
with a projective equivalence clas¥] of GL (2, C) matrices. Let /] be a fixed point of
P: PL(2,C) — PL(2, C). Then

o (] R et | [ ey | S
az1 az aiz  —ain azi1 az
So there exist§ € C* such that

a11 = —&ayy, a2 = &apy, az1 = &ayo, azp = —£ax, (6.9)

whence it follows thatt| = 1. But then

2 2 - -
+ la12|®  aiiazy + aizaz: 2 2
mmt = (1ol a >= a11|? + |a12))1a, 6.10

<021a11+6122t112 laz1|? + |aza|? (a11" + la12)12 (6.10)

so [M] € PU(2) = SO(3). HenceM; consists of the rotation orbit of Id: — z, and the
induced metrigy onM is

y = A3(0)0 -0, (6.11)

the standard bi-invariant metric on SO(3), up to a constant factor. &acM; has com-
pletely uniform energy density, so it is rather misleading to call these solutiRi®s “
lumps”.

For highem the possibilities are more varied. For example, the energy density-ef |
Z"] € M,,, n > 3, is concentrated in a symmetric band centred on a (projected) great circle
onR P2, the band being narrower for largerConsidering rational maps of the fori®.5),
with parameters satisfyin@.6) and (6.7)a sharp lump-like structure may be induced by
arranging that one of the poles wf be close to one of the zeroes, for example by choosing
wo close to—1/w1, while keeping the other poles and zeroes well separated. Since lumps
are associated with close pole-zgrairs, and the poles determine the zeroes (they must
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be antipodal), fopp € M,, at most(n — 1)/2 distinct lumps in the energy distribution are
possible.

The origin of the noncompactnessMf,, n > 3, is that wherw, — —1/iw1, say, the
degree ofp drops by 2, that is a lump (or, in the lifted picture, an antipodal pair of lumps)
forms, collapses to an infinitely sharp spike and disappears. In fact, there are geodesics
with respect tgz which reach such singularities in finite time. We conclude this section by
establishing the following theorem.

Theorem 6.2. For all n > 3, (M,,, #) is geodesically incomplete

Proof. It suffices[17] to exhibit a curve of finite length which converges to infinity, that is,
escapes every compact subseMyf. Consider the curvé™ : [1/2,1) 5 p W, e M,,
where

w2(@+ Dz —ph

Wol2) = G-DGi+p

(6.12)

which certainly converges to infinity (@as— 1). The induced metricoR is 7 = f(p) dp?,
where

dzdz 1
c (1+12122 (14 |W,[2)?

aw, |2

flp) = (6.13)

We now appeal to a technical lemma whose proof is postponagpendix A

Lemma 6.3. There exisC > 0andp, € (0, 1) such that for allp € (ps, 1),

flp) < C |:1+ log (ﬁ)]

Hence, the length of

1 1 1
/ dpv/ flp) < C [1+/ d,o\/1~|— log (1—>:| (6.14)
12 P —-p

is finite. O

Note that this result does not follow directly from the results of Sadun and Sgakijht
previously mentioned (incompleteness of, Malthough the method of proof is similar.
Recall that geodesic flow aiM,,, 7) is conjectured to approximate closely the low energy
dynamics of théR P? o-model on space—tim& P2 x R. So the geodesic approximation
predicts thaR P2 lumps orlR P? may collapse and form singularities in finite time, just as it
does fors? lumps on any compact Riemann surface. In fact, little is known about singularity
formation in the full (2+ 1)-dimensional system, although there is some numerical evidence
in favour of lump collaps¢21,26].
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7. Concluding remarks

One could hope to generalize the results of this paper in at least two directions. Replacing
the domain 2-sphere by an arbitrary compact Riemann sufacme could study thé?
metric on the space HalX) of degreen (anti)holomorphic map& — S2. If nonempty,
Hol, (X)) is the space ofminimal energydegreen harmonic maps (if empty, for example
Hol+1(T?) = ¢, there exists no minimal energy degrelearmonic map), which is the space
of most direct interest to physicists, rather than the spaed dtlarmonic maps. Hl %)
has the structure of a complex algebraic variety, so one would eXpexirem 2.1the
Kahler property of thel.? metric, to generalize to this situation. (In fact, HeL) may
not be smooth ifn| < 2genusX) — 2, but the Kahler property should still hold in the
complement of the singular set.)

As an example, consider Hgl'”2). It was proved if33] that Hob(72) is homeomorphic
(in ¢ topology) to the complex homogeneous space(fPC) x T2]/ Vs, whereV, is a
certain Viergruppe (finite group of order 4, each element being its own inverse). S@¥ipl
inherits a natural complex structure from the covering spad@FL) x T2, and it suffices
to show that the lift of the.2 metric is Kahler. Explicitly, a point

([(“1 “Zﬂ ,s> € PL(2,C) x T2, (7.1)
az aa

is identified with the degree 2 holomorphic map

a zZ—9)+a
W(z) = M (7.2)
asp(z — ) + aa
wheregp is the Weierstrass-function. Introducing inhomogeneous coordinates o(2PC),
an essentially identical argument to that of the proofloéorem 2.%establishes.

Theorem 7.1. TheL2 metricy onHolx(72) is Kahler with respect to the complex structure
induced by the identification wifPL(2, C) x T2]/ Va.

It is interesting to note thaHol>(T2), ), like (M4, y) has finite diameter, leading one
to expect thaTheorem 3.3hould generalize tHol,, (), y) also.

The second natural generalization would be to replace the codasfais CP! by
a general projective spacg,P". Lemaire and Wood19] have shown that the space of
degreen, energy 4E harmonic mapss? — CP?, Harm, g(CP?) is, in C/ topology
(j = 2), adisjoint union of smooth manifolds indexed by total ramification index. Further,
there is an explicit identification between each smooth component of Hai@P?) and
an appropriate space of linearly full holomorphic mags— CP? of fixed degree and
ramification index. So again one has a natural complex structure on the moduli space, and
again one would expect tHe? metric to be Kéhler with respect to this structure. It is even
possible that the Kahler property of tiié metric may persist when the codomain itself
is not Kahler. Bolton and Woodwar{B] have conjectured that Harmis?"), the space
of energy 4 E harmonic maps? — $2", is a complex algebraic variety (of dimension
2E +m?). Iftrue, it would be natural to ask again whethes Kahler, at least on the smooth
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part of Harme (52"). Note that both these generalizations lie beyond the scope of Ruback’s
formal argumenf28].
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Appendix A. Proofs of Lemmas 2.2 and 6.3

Proof of Lemma 2.2. Since F : X x (—¢,¢) — R is smooth, its partial deri-
vative with respect to the second entd, is continuous. Hence the restrictidr :

X x[0,x] - R, 0 < x < ¢, is integrable (its domain is compact). Thus, by the Fubini
theorem4]

Jol et = a7l

But fo [0.4] F» = F(-,x) — F(-,0), so the left-hand side ig(x) — f(0). Hence, by the
fundamental theorem of calculus

f@=U?4 =/mwy 0
X x=0 X

Proof of Lemma 6.3. From(6.12) and (6.13dne finds that

fmzéw&mm,

where

|1+ 722 12|22 |z + 12|z — 12

F(z, p) = .
@ P = 3 12P)2 (2 + plflz — 12 + [z — 171z + 121120272

Fix € € (0, 1/2), and assume thatis close to 1, thatis & p — 1 < €. ThenF(-, p) may
be bounded independent pfexcept on the union of diskB.(—1) U D.(1), where one or
other of the terms in the denominator may vanish (Her&o) = {z € C: |z — zo| < r}).
We shall denote positive constants (independent afid o) by C1, C2, etc. OnD(—1)
there exist<1 such that

Cilz + 12
(Iz + pI? + ap?|z + 1]2)2’

F(z, p) <
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wherea = (1 — €)2"=2 < 1. Hence, defining €’ := z + 1,
/ dz dz F(z, p)
De(—-1)
3

21 €
C do d
= 1/0 /0 "+ ap?)rZ — 2(1— p) coshr + (1 — p)?]2

i

1
C d )
- 2/0 (@22 =20~ pir + L 72
providedp > (2a)~1/2 € (0, 1). Then, rescaling — /(1 — p), one finds that

3

. <1fp>*1d
fm_n QG p) <C2/0 "G/ — 22+ 112

A=-p~t g
< C3+C4/ - < Cs[1 —log(1 — p)].
1

Noting thatp > (2a)~Y/2 implies 14+ ap? > 3a/2, one finds a similar estimate for the
contribution fromD,(1):

_ _ lz — 12
dzdz F(z, p) < CG/ dz dz
/De(l) De(D) (Iz — 112 + a|pz — 1]2)?

3

1
= C7/o AT 0D = 2apd = pr + @ = P2

3

(1-p)71
< Cg/o dr (3272 2 11 < Co[1 — log(1 — p)].

SinceF is bounded independent pfon U = C\[D.(—1) U D¢(1)],

_ © dr
/ dzdz F(z, p) < C10+ C11/ 1 < C12.
U 1

DefiningC = Cs + Cg + C12 > 0 andp, = (22)~ Y2 € (0, 1), the lemma is proved. O
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