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Abstract

Harmonic maps fromS2 to S2 are all weakly conformal, and so are represented by rational
maps. This paper presents a study of theL2 metricγ on Mn, the space of degreen harmonic maps
S2 → S2, or equivalently, the space of rational maps of degreen. It is proved thatγ is Kähler
with respect to a certain natural complex structure on Mn. The casen = 1 is considered in detail:
explicit formulae forγ and its holomorphic sectional, Ricci and scalar curvatures are obtained, it is
shown that the space has finite volume and diameter and codimension 2 boundary at infinity, and
a certain class of Hamiltonian flows on M1 is analysed. It is proved that̃Mn, the space of absolute
degreen (an odd positive integer) harmonic mapsRP2 → RP2, is a totally geodesic Lagrangian
submanifold of Mn, and that for alln ≥ 3, M̃n is geodesically incomplete. Possible generalizations
and the relevance of these results to theoretical physics are briefly discussed.
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1. Introduction

In theoretical physics, one often regards harmonic maps(M, g) → (N, h), from a Rie-
mannian manifold of dimension 2, as static solutions of the so-called nonlinearσ-model on
space–time(M×R, η), whereη = dt2−g is the Lorentzian pseudometric. Those harmonic
maps which minimize energy within their homotopy class are usually called “lumps” in this
context, because generically their energy density is localized in lump-like structures dis-
tributed overM. In many cases of interest, the homotopy classes of mapsφ : M → N are
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labelled by the topological degree ofφ, and the moduli space of static degreen lumps, Mn, is
a smooth, finite-dimensional manifold. There is a natural Riemannian metric on Mn, namely
theL2 metric, which assigns to each pair of tangent vectorsX, Y ∈ TφMn ⊂ Γ(φ∗TN) the
inner product

γ(X, Y) =
∫

M

dµg hφ(X, Y), (1.1)

where dµg denotes the area measure on(M, g). The physical interpretation of this metric is
that it is the restriction to Mn of the symmetric bilinear form defined by the kinetic energy
functional of the parentσ-model. Note that, unlike the harmonic map energy, the kinetic
energy (and henceγ) depends ong, not just the conformal class ofg.

This paper presents a study of this metric in the casesM = N = S2 andM = N =
RP2 with their canonical metrics. These cases are convenient because one has complete,
explicit parameterizations of the harmonic maps in terms of rational functions. We will
focus particularly on the simplest nontrivial case, degree 1 mapsS2 → S2, obtaining a
quite thorough understanding of itsL2 geometry. The choiceN = S2 or RP2 is rather
natural from the stand-point of physics since the order parameters of ferromagnets and
nematic liquid crystals areS2- andRP2-valued, respectively[36]. Previously, the algebraic
topology of spaces of rational maps has been studied by Segal[31] and Guest et al.[9], and
the algebraic topology of spaces of harmonic mapsS2 → Sm andS2 → RPm by Furuta
et al.[7]. The differential topology of spaces of harmonic mapsS2 → S2m andS2 → CPm

has been studied by Bolton and Woodward[3] and Lemaire and Wood[19], respectively.
The present paper may be considered complementary to this body of work.

The physical motivation behind this study is thatσ-model lumps are in many ways anal-
ogous to topological solitons in relativistic gauge theories, such as BPS monopoles and
Abelian Higgs vortices. In theS2 case, for example, lumps attain a Bogomol’nyi type topo-
logical lower bound on energy within their homotopy class, and consequently satisfy a first
order “self-duality” equation (namely, the Cauchy–Riemann equation). Manton conjectured
[22] that the slow motion ofn BPS monopoles is well approximated by geodesic flow with
respect to theL2 metric on then-monopole moduli space. This conjecture was extended to
lumps by Ward[37], and has since been formulated and proved rigorously for monopoles
and vortices by Stuart[34,35]. The metric in the casen = 2, M = R

2, N = S2 was inves-
tigated numerically by Leese[18]. So the physical motivation behind the present work is
the hope that theL2 metrics will shed light on slow lump dynamics in the parentσ-model,
as the Atiyah and Hitchin[1] and Samols[30] metrics have done for monopole and vortex
dynamics. Of course, they remain interesting and natural geometric structures in their own
right.

The rest of the paper is structured as follows. Let Mn, n ∈ Z, denote the space of
degreen harmonic mapsS2 → S2. In Section 2, we give a simple, concrete proof that
(Mn, γ) is Kähler with respect to the complex structure induced by a natural open inclusion
Mn ⊂ CP2n+1. This result was previously conjectured (in a rather more general setting)
by Ruback[28], who gave a very persuasive formal argument in its favour. InSection 3we
show that the Kähler property, along with the isometry group, almost completely determines
theL2 metric on M1. Specifically, we show that any Kähler metric on M1 invariant under
the isometry group ofγ is determined by a single function of one variable, rather than 21
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functions of six variables, as for a generic metric in six dimensions. An explicit formula for
γ is given, and it is shown that M1, although noncompact, has finite volume and diameter.
It is shown also that the boundary of(M1, γ) at infinity has codimension 2.

In Section 4, the curvature properties of M1 are studied. Explicit formulae for the holomor-
phic sectional curvatures of a certain unitary frame and for the Ricci and scalar curvatures
are derived. It is shown that the holomorphic sectional and scalar curvatures are unbounded
above, and conjectured that the Ricci curvature is positive definite. The relevance of these
results to quantum lump dynamics is discussed.

It is natural to regard the Kähler formΩ on Mn as a symplectic form and study the
symplectic geometry of(Mn, Ω). Such symplectic geometry has recently been used to
study vortex dynamics in a nonrelativistic version of the Abelian Higgs model, for example
[27]. In Section 5, the most general physically meaningful Hamiltonian flow on(M1, Ω) is
analysed, and the corresponding one lump dynamics described.

In Section 6, we address the geometry of spaces of harmonic mapsRP2 → RP2. Eells
and Lemaire[6] have shown that, if nonconstant, such maps are classified homotopically
by a certain odd positive integer, which we shall call the absolute degree (seeSection 6for
a definition). InSection 6it is proved thatM̃n, the space of absolute degreen harmonic
maps, is naturally identified with a certain totally geodesic Lagrangian submanifold of Mn,
where the symplectic form is again taken to be the Kähler form. Further, it is shown that
for all n ≥ 3, M̃n is geodesically incomplete, whilẽM1 is compact.

Finally, inSection 7we speculate on possible generalizations of this work. As an example,
it is shown that theL2 metric on the space of degree 2 elliptic functions is naturally Kähler.

2. The Kähler property of M n

By the Hopf degree theorem[10], homotopy classes of continuous mapsφ : S2 → S2 are
labelled by their topological degreen ∈ Z. A well-known argument of Lichnerowicz[20]
(rediscovered independently by physicists Belavin and Polyakov[2] and Woo[40]) shows
that in the degreen class the harmonic map energy satisfiesE[φ] ≥ 2π|n|, with equality
if and only if φ is holomorphic (n ≥ 0) or antiholomorphic (n < 0). Since harmonic
maps are by definition local extremals ofE, (anti)holomorphic maps are harmonic, and
furthermore, minimize energy within their class. In fact, all harmonic mapsS2 → S2 are
(anti)holomorphic[41]. Since degreen and−n maps are trivially related by a change of
orientation (on domain or codomain), we may, and henceforth will, assumen ≥ 0 without
loss of generality.

Introducing complex stereographic coordinatesz, W on domain and codomain, the gen-
eral degreen harmonic map is

W(z) = a1+ a2z+ · · · + an+1zn

an+2+ an+3z+ · · · + a2n+2zn
, (2.1)

whereai ∈ C are constants,an+1 anda2n+2 both do not vanish, and the numerator and
denominator share no common roots. So Mn is the space of degreen rational maps. Clearly,
any point(ξa1, . . . , ξa2n+2) ∈ C

2n+2, ξ ∈ C
× := C\{0}, determines the same rational map

as(a1, . . . , a2n+2), so one may identify each rational map with a point inCP2n+1. This
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gives a natural open inclusion Mn ⊂ CP2n+1 (not an identification, since the “no common
roots” condition removes a complex codimension 1 algebraic variety fromCP2n+1) which
we use to equip Mn with a topology and complex structure. This topology is natural in that
it coincides with the relative topology of Mn in C0(S2, S2). The metric of interest doesnot
derive from the inclusion Mn ⊂ CP2n+1, of course, but rather from definition(1.1). We
now establish the following theorem.

Theorem 2.1. For all n > 0, (Mn, γ) is Kähler with respect to the complex structure
induced by the open inclusionMn ⊂ CP2n+1.

Proof. On the open set wherea2n+2 �= 0, we may introduce complex local coordinates
bα = aα/a2n+2, α = 1, 2, . . . , 2n+1. We may always arrange thata2n+2 �= 0 by a rotation
of the codomain, so it suffices to show thatγ is Kähler in this coordinate system. Explicitly,

γ = γαβ dbα db
β
, (2.2)

where repeated indices are summed over, and

γαβ =
∫
C

dz dz̄

(1+ |z|2)2

1

(1+ |W |2)2

∂W

∂bα

(
∂W

∂bβ

)
, (2.3)

W = b1+ b2z+ · · · + bn+1zn

bn+2+ bn+3z+ · · · + zn
. (2.4)

Note thatγ is manifestly Hermitian, that is,γβα ≡ γ̄αβ. Hence, we only need to demonstrate
that

∂γαβ

∂bδ
≡ ∂γδβ

∂bα
,

∂γαβ

∂b
δ
≡ ∂γαδ

∂b
β

(2.5)

for all α, β, δ [24]. In fact(2.5) follow immediately from(2.3) and (2.4)provided one may
interchange the order of partial derivative and integral in∂γαβ/∂bδ. But this is an immediate
consequence of the following lemma, whose proof is presented inAppendix A.

Lemma 2.2. Let X be a compact Riemannian manifold, F : X× (−ε, ε) → R be smooth
andf : (−ε, ε) → R such that

f(x) =
∫

X

F(·, x).

Then

f ′(0) =
∫

X

F2(·, 0),

whereF2 : X× (−ε, ε) → R is the partial derivative ofF with respect to the second entry.

Applying this to the integrand of(2.3), with x representing the (real or imaginary part
of) any of the coordinatesbα, the result is proved. �
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Before specializing to the casen = 1, we note two facts about Mn. First, (Mn, γ) is
geodesically incomplete. This is a special case of a more general result[29]. Second, both
domain and codomain spheres are isometric under the group of rotations and reflections
of R

3, O(3) ∼= SO(3) ∪ SO(3). HereSO(3) denotes the orientation reversing component.
The induced action of O(3) × O(3) on the set of continuous mapsS2 → S2 decomposes
O(3)×O(3) into degree preserving and degree reversing components:

O(3)×O(3)∼= [(SO(3)× SO(3)) ∪ (SO(3)× SO(3))] ∪ [(SO(3)

×SO(3)) ∪ (SO(3)× SO(3))]. (2.6)

The degree preserving subgroup, call itG, acts isometrically on(Mn, γ). It is convenient
to defineP : Mn → Mn such thatP : W(z) �→ W(z̄). ThenG ∼= SO(3) × SO(3) × Z2,
whereZ2 = {Id, P}. We shall denote the identity component ofG by G0.

3. The metric on M1

In the casen = 1, the isometric action ofG0 ∼= SO(3) × SO(3) described above has
cohomogeneity 1, that is, genericG0 orbits have codimension 1. This is most easily seen by
identifying M1 with PL(2, C). Note that the casen = 1 is special in that degree 1 rational
maps are closed under composition, so M1 has a natural Lie group structure, namely that
of the Möbius group PL(2, C) ∼= SL(2, C)/Z2. Explicitly, one identifies a rational map

W : z �→ a11z+ a12

a21z+ a22
(3.1)

with a projective equivalence class of GL(2, C) matrices,

[M] =
{

ξ

(
a11 a12

a21 a22

)
: ξ ∈ C

×
}

, (3.2)

noting that map composition and matrix multiplication correspond under the identification.
Then the PU(2) ∼= SU(2)/Z2 ∼= SO(3) subgroup of PL(2, C) consists of rotations ofS2,
so in matrix languageG0 acts on PL(2, C) by left and right PU(2) matrix multiplication.

A particularly convenient moving coframe for PL(2, C) is defined as follows. Letτa, a =
1, 2, 3 be the standard Pauli matrices

τ1 =
(

0 1

1 0

)
, τ2 =

(
0 −i

i 0

)
, τ3 =

(
1 0

0 −1

)
. (3.3)

Then any [M] ∈ PL(2, C) has a unique polar decomposition

[M] = [U](ΛI2+ λ · τ ), (3.4)

where [U] = {±U} ∈ PU(2), λ ∈ R
3, λ = |λ|, Λ = √1+ λ2 and· denotes theR3 scalar

product[25]. The moving coframe is{dλa, σa : a = 1, 2, 3}, whereσa are the left-invariant
1-forms on PU(2) associated with the basis{i/2τa : a = 1, 2, 3} for su(2) ∼= T[I2] PU(2). So
M1 ∼= PU(2)×R

3 as a manifold (thoughnotas a group). Physically, the lump parameterized
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by ([U], λ) should be thought of as located at−λ̂ ∈ S2 (whereλ̂ = λ/λ), with “sharpness”
λ and internal orientation [U]. The action of([L], [R]) ∈ PU(2)× PU(2) ∼= G0 on M1 in
terms of the polar decomposition is

([L], [R]) : ([U], λ) �→ ([LUR],Rλ), (3.5)

whereR ∈ SO(3) is the rotation corresponding to [R] ∈ PU(2) (explicitly, it has matrix
componentsRab = (1/2) tr(τaR†τbR)). From this, one sees that theG0 action indeed
has cohomogeneity 1, the orbits being level sets ofλ. The orbit space M1/G0 may be
identified with the radial curveΓ = {([I2], (0, 0, λ)) : λ ≥ 0} of rational mapsWλ : z �→
µ(λ)z, whereµ(λ) = (Λ+ λ)2. There is one exceptional orbit, namelyλ = 0, which has
codimension 3.

The main aim of this section is to obtain an explicit formula forγ, by applying the
following proposition.

Proposition 3.1. Letτ be aG invariant symmetric(0, 2) tensor onM1 which is Hermitian
(τ(JX, JY) ≡ τ(X, Y)), and whoseJ-associated2-form τ̂ (τ̂(X, Y) := τ(JX, Y)) is closed.
Then there exists a smooth functionA : [0,∞) → R such that

τ = A1 dλ · dλ+ A2(λ · dλ)2+ A3σ · σ + A4(λ · σ )2+ A5λ · (σ × dλ), (3.6)

where

A1 = A(λ), A2 = A(λ)

1+ λ2
+ A′(λ)

λ
, A3 =

(
1+ 2λ2

4

)
A(λ),

A4 =
(

1+ λ2

4λ

)
A′(λ), A5 = A(λ), (3.7)

A′ denotes the derivative ofA, × the R
3 vector product and juxtaposition of covectors

denotes symmetrized tensor product.

Proof. We first show that the most generalG0 invariant symmetric(0, 2) tensor on M1 is

τ =A1 dλ · dλ+ A2(λ · dλ)2+ A3σ · σ + A4(λ · σ )2+ A5λ · (σ × dλ)

+A6σ · dλ+ A7(λ · dλ)(λ · σ ), (3.8)

whereA1, . . . , A7 are functions ofλ only.
Thus such aτ is G0 invariant follows from the pulled back action ofG0 on our moving

coframe:

([L], [R]) : (dλ, σ ) �→ (Rdλ,Rσ ). (3.9)

We may prove that(3.8) is the most generalG0 invariant symmetric (0, 2) tensor possi-
ble by means of the representation theory of SO(N). Any such tensor is uniquely deter-
mined by the 1-parameter family of symmetric bilinear formsτλ : Vλ ⊕ Vλ → R, where
Vλ = TWλM1, and eachτλ must be invariant under the isotropy groupHλ < G0 of Wλ.
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Explicitly,

Hλ =



{([

exp

(
− i

2
ψτ3

)]
,

[
exp

(
i

2
ψτ3

)])
: ψ ∈ R

}
∼= SO(2), λ > 0,

{([U†], [U]) : [U] ∈ PSU(2)} ∼= SO(3), λ = 0.

(3.10)

The induced action ofHλ onV ∗λ ⊗V ∗λ leaves the subspaces of symmetric and antisymmetric
bilinear forms invariant, that is, preserves the splitting

V ∗λ ⊗ V ∗λ = [V ∗λ � V ∗λ ] ⊕ [V ∗λ ∧ V ∗λ ] =: V+λ ⊕ V−λ . (3.11)

One may compute the dimension of the subspace ofV+λ on whichHλ acts trivially (i.e. the
subspace ofHλ invariant symmetric bilinear forms) by counting the number of copies of
the trivial representation in the decomposition of(Hλ, V+λ ) into irreducible representations,
using character orthogonality.Eq. (3.8)captures all possibilities if and only if this dimension
is 7 forλ > 0 and 3 forλ = 0.

Consider first the generic case,λ > 0, Hλ
∼= SO(2). TheHλ action onVλ has matrix

representation

R(ψ) =




cosψ sinψ 0 0 0 0

− sinψ cosψ 0 0 0 0

0 0 1 0 0 0

0 0 0 cosψ sinψ 0

0 0 0 − sinψ cosψ 0

0 0 0 0 0 1




(3.12)

relative to the ordered basis(∂/∂λ1, . . . , θ3), where{θa} are the left-invariant vector fields
dual to{σa}. Hence the characterχ : Hλ → R of this representation is

χ(ψ) = tr R(ψ) = 2+ 4 cosψ. (3.13)

The character of the induced representation of SO(2) onV±λ is [11]

χ̃±(ψ)= 1

2
{[tr R(ψ)]2± tr[R(ψ)2]}

=
{

7+ 8 cosψ + 6 cos 2ψ, symmetric,

5+ 8 cosψ + 2 cos 2ψ, antisymmetric.
(3.14)

We shall make use of the result forV−λ when analysing theJ-associated 2-form̂τ. Since
SO(N) is a compact Lie group, the characters of inequivalent irreducible representations
are orthogonal functions on SO(N) with respect to the Haar measure. One may therefore
extract the coefficienta±0 of the trivial character (χ0(ψ) = 1) from the decomposition

χ̃± =
∑

n

a±n χn (3.15)
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of χ̃± into irreducible representations by taking the character inner product of both sides of
(3.15)with χ0

a±0

∫
SO(N)

dµ χ2
0 =

∫
SO(N)

dµ χ0χ̃±, (3.16)

where dµ is the Haar measure. For SO(2), dµ = dψ/2π, so

a±0 =
∫ 2π

0

dψ

2π
χ̃±(ψ) =

{
7, symmetric,

5, antisymmetric,
(3.17)

in agreement with(3.8).
In the special caseλ = 0, the isotropy group isH0 ∼= SO(3) whose action onVλ has

matrix representation

R(ψ, n̂) =
(
O(ψ, n̂) 0

0 O(ψ, n̂)

)
, (3.18)

where(ψ, n̂) parameterizes the rotation through angleψ about axiŝn ∈ S2 andO(ψ, n̂) is
the associated SO(3) matrix. The character of this representation is

χ(ψ, n̂) = 2 trO(ψ, n̂) = 2(1+ eiψ + e−iψ) = 2+ 4 cosψ. (3.19)

It follows from (3.13), (3.14) and (3.19)that the characters of the induced representations
on V±λ are the same trigonometric functionsχ̃±(ψ) above, independent ofn̂. Once again,
we may extracta±0 using character orthogonality, but now we must integrate over SO(3)
using the Haar measure, which is

dµ = 1

π
sin2 ψ

2
dψ, (3.20)

after integrating over̂n [12]. The result is

a±0 =
1

π

∫ 2π

0
dψ sin2 ψ

2
χ̃±(ψ) =

{
3, symmetric,

1, antisymmetric,
(3.21)

which proves the initial claim.
Sinceτ isG invariant (not merelyG0 invariant), it must also be invariant under the discrete

isometryP , which in matrix terms isP : [M] �→ [M̄] (entrywise complex conjugation).
The pull-back action on the moving coframe is

P∗ : (dλ, σ ) �→ (dλ1,−dλ2, dλ3,−σ1, σ2,−σ3), (3.22)

implying thatA6 ≡ A7 ≡ 0.
It remains to show that the coefficient functionsA1, . . . , A5 are determined by the single

functionA as in(3.7). This follows from Hermiticity ofτ and closure of̂τ. Recall that the
complex structure on M1 is inherited from the open inclusion M1 ⊂ CP3. For example, on
the open set wherea11 �= 0 (Eq. (3.1)), we may use the inhomogeneous coordinates

b1 = a12

a11
, b2 = a21

a11
, b3 = a22

a11
, (3.23)
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to define a complex coordinate chart. This chart contains the curveΓ we are using to
parameterize the orbit space M1/G0. It is a simple matter to write down the almost complex
structureJ-associated with this complex structure, in terms of the basis{∂/∂λa, θa : a =
1, 2, 3} for Vλ, namely

J :
∂

∂λ1
�→ 2

Λ

(
θ1− λ

2

∂

∂λ2

)
, J :

∂

∂λ2
�→ 2

Λ

(
θ2+ λ

2

∂

∂λ1

)
,

J :
∂

∂λ3
�→ 2

Λ
θ3, J : θ1 �→ − 1

2Λ

(
∂

∂λ1
− 2λθ2

)
,

J : θ2 �→ − 1

2Λ

(
∂

∂λ2
+ 2λθ1

)
, J : θ3 �→ −Λ

2

∂

∂λ3
. (3.24)

We emphasize that(3.24)is valid only on tangent spaces based at points on the curveΓ .
By G invariance ofτ, this will be all the information we need.

Hermiticity of τ, τλ(JX, JY) ≡ τλ(X, Y) for all X, Y ∈ Vλ, produces two nontrivial
constraints on the coefficientsA1, . . . , A5, namely,

A3 ≡ A1

4
+ λ2

2
A5, A1+ λ2A2 ≡ 4

1+ λ2
(A3+ λ2A4). (3.25)

Let f ∈ G, and denote by the same symbol its action on M1, f : M1 → M1. The 2-form
τ̂(·, ·) = τ(J ·, ·) is invariant,f ∗τ̂ = τ̂, under any holomorphicf ∈ G sincef ∗τ = τ (G
invariance ofτ) and dfW ◦ JW = Jf(W) ◦ dfW (holomorphicity). Similarly,f ∗τ̂ = −τ̂ for
antiholomorphicf ∈ G. Now eachf ∈ G0 is holomorphic, sôτ is G0 invariant. We claim
that the most generalG0 invariant 2-form on M1 is

τ̂ = Â1(dλ · σ − σ · dλ)+ Â2((λ · dλ)(λ · σ )− (λ · σ )(λ · dλ))+ Â3λ · (σ × σ )

+ Â4λ · (dλ× dλ)+ Â5(dλ · (λ× σ )− (λ× σ ) · dλ), (3.26)

whereÂ1, . . . , Â5 are functions ofλ only, and juxtaposition of 1-forms indicatesunsym-
metrizedtensor product. Clearly, such a 2-form isG0 invariant by(3.9), and is the most
general such form possible by(3.17) and (3.21). In fact, sinceP : [M] �→ [M̄] is antiholo-
morphic,P∗τ̂ = −τ̂, and we may immediately conclude thatÂ5 ≡ 0.

It is a simple matter to matcĥτ(·, ·) with τλ(J ·, ·) onVλ using(3.24), and hence determine
Â1, . . . , Â4 in terms ofA1, . . . , A5. The result is

Â1 = Λ

2
A1, Â2 = Λ

2
A2, Â3 = 1

4Λ
(A1+ 4A3), Â4 = λ

Λ
(A5− A1).

(3.27)

Closure ofτ̂ then gives extra constraints on the metric coefficientsA1, . . . , A5. Using the
standard exterior differential algebra for the left-invariant 1-forms of SO(3),

dσ1 = σ2 ∧ σ3, dσ2 = σ3 ∧ σ1, dσ3 = σ1 ∧ σ2, (3.28)
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one finds that at anyWλ ∈ Γ ,

dτ̂ = (Â
′
1− λÂ2) dλ3 ∧ (dλ1 ∧ σ1+ dλ2 ∧ σ2)

+ (Â3− Â1)(dλ1 ∧ σ2 ∧ σ3+ dλ2 ∧ σ3 ∧ σ1+ dλ3 ∧ σ1 ∧ σ2)

+ λ(Â
′
3− λÂ2) dλ3 ∧ σ1 ∧ σ2+ (λÂ

′
4+ 3Â4) dλ1 ∧ dλ2 ∧ dλ3. (3.29)

Hence, d̂τ = 0 if and only if

Â1 = Â3, Â
′
1 = λÂ2, Â4 = 0, (3.30)

the last of these following from nonsingularity ofτ̂ at λ = 0. Rearranging these using
(3.27)and the Hermiticity constraints(3.25), one finds that all the metric coefficients are
determined by the single smooth functionA1 = A(λ) as in(3.7). �

Corollary 3.2. TheL2 metric onM1 is

γ = A1 dλ · dλ+ A2(λ · dλ)2+ A3σ · σ + A4(λ · σ )2+ A5λ · (σ × dλ),

whereA1, . . . , A5 are functions ofλ only, determined as in(3.7)by the single function

A = 4πµ[µ4− 4µ2 logµ− 1]

(µ2− 1)3
, (3.31)

whereµ = (
√

1+ λ2+ λ)2.

Proof. By Theorem 2.1, γ is Hermitian and itsJ-associated 2-form (the Kähler form,
henceforth denotedΩ, rather thanγ̂) is closed. Furthermore,γ is G invariant. Hence
Proposition 3.1applies. The formula forA is obtained by computingγλ(∂/∂λ1, ∂/∂λ1)

using(3.7). �

Given a tensorτ satisfying the hypotheses ofProposition 3.1, it is convenient to define a
second coefficient function,B(λ) := τλ(θ3, θ3). Of course,B is determined byA, according
to (3.7)

B(λ) = A3+ λ2A4 ≡ 1+ 2λ2

4
A(λ)+ λ+ λ3

4
A′(λ). (3.32)

One finds forτ = γ, theL2 metric, that

B = 4πµ2[(µ2+ 1) logµ− µ2+ 1]

(µ2− 1)3
. (3.33)

An explicit formula forγ has previously appeared in the physics literature[32], although
its Kähler property and the resulting interdependence of the coefficient functions was not
understood, nor was a rigorous classification ofG invariant tensors on M1 performed.
The geodesic flow on(M1, γ) has been extensively studied, also in[32], revealing quite
complicated lump dynamics. We finish this section by examining the largeλ behaviour of
γ. Specifically, we will prove that(M1, γ) has finite volume and diameter, and describe its
boundary at infinity.

Theorem 3.3. (M1, γ) has finite volume and diameter.
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Proof. The volume form is

Vol = Λ

2
BA2 dλ1 ∧ dλ2 ∧ dλ3 ∧ σ1 ∧ σ2 ∧ σ3. (3.34)

Hence,

Vol(M1, γ)= 4π Vol(SO(3))

∫ ∞

0
dλ λ2

√
1+ λ2

2
BA2

= π

16
Vol(SO(3))

∫ ∞

1

dµ

µ

(
µ− 1

µ

)2

BA2

< c + π3 Vol(SO(3))

∫ ∞

2
dµ µ

(
24 logµ

µ2

)(
23

µ

)2

, (3.35)

wherec is a constant (the volume fromµ = 1 to 2). Hence(M1, γ) has finite volume.
One may similarly bound the diameter of(M1, γ),

diam(M1, γ) := sup
W1,W2∈M1

d(W1, W2). (3.36)

By the triangle inequality,

diam(M1, γ) ≤ 2 sup
W∈M1

d(W, Id). (3.37)

The distance of any mapW from Id is bounded above by the sum of the length of the radial
curve from([U], λ) to ([U], 0) and the distance in SO(3) from [U] to [I] with respect to the
bi-invariant metricA3(0)σ · σ . The latter contribution is bounded independent of [U] by
compactness of SO(3), and the former is, byG0 invariance, bounded above by the length
of the curveΓ . But

length(Γ)=
∫ ∞

0
dλ
√

A1+ λ2A2

=
∫ ∞

1

dµ

µ

√
B < c + 8

√
π

∫ ∞

2
dµ

√
logµ

µ2
< ∞. (3.38)

Hence(M1, γ) has finite diameter. �

For both estimates, the key point is thatA(λ) andA′(λ) decay sufficiently rapidly as
λ →∞ to guarantee convergence of the integrals. Note that while everyG invariant Kähler
metric on M1 is determined by a single functionA(λ), the converse is false: not everyA(λ)

defines such a metric since one must also demand thatγ be positive definite. This places
one nontrivial constraint onA

γλ

(
∂

∂λ3
,

∂

∂λ3

)
> 0⇒ A′

A
> −1+ 2λ2

λ+ λ3
, (3.39)

and one trivial constraint (A > 0), which together bound the decay rate ofA(λ) asλ →∞.
Integrating inequality(3.39)yields, for example,

A(λ) >

√
2A(1)

λ
√

1+ λ2
∀λ > 1, (3.40)
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so the decay ofA cannot be faster than O(1/λΛ). It is interesting to note that the asymptotic
behaviour of theL2 metric saturates this bound, namely limλ→∞ λΛA = π.

As shown above, the boundary of(M1, γ) at infinity lies at finite proper distance, so
the space is geodesically incomplete. One expects, however, that generic geodesics donot
escape to infinity, since the boundary has codimension 2, as we now show.

Theorem 3.4. The boundary at infinity of(M1, γ) is diffeomorphic toS2× S2.

Proof. The idea is to analyse the 1-parameter family of homogeneous metrics on SO(3)×S2

induced byγ, using the cohomogeneity 1 property. Consider the pullback by the left coset
projectionπλ : G → G/H(λ) ↪→ M1 of the metricγ. The orbit itself (level set of
λ ∈ [0,∞)) may be identified with the quotient ofG by the subgroup generated by the null
space of(π∗λγ)(I,I) (the isotropy groupH(λ) of Wλ by nondegeneracy ofγ). With respect to
the basis(θi, 0), (θ1,−θ1), i = 1, 2, 3 for T(I,I)G, this bilinear form has coefficient matrix

[(π∗λγ)(I,I)] =




1
4(Λ2+ λ2)A 0 0 0 1

2λA 0

0 1
4(Λ2+ λ2)A 0 −1

2λA 0 0

0 0 B 0 0 0

0 −1
2λA 0 λ2A 0 0

1
2λA 0 0 0 λ2A 0

0 0 0 0 0 0




.

We seek to construct the “λ = ∞” orbit. As λ →∞, the matrix above converges to

diag
(π

2
,

π

2
, 0, π, π, 0

)
,

whose null space generates the toric subgroup

T 2 =
{([

exp

(
i

2
ατ3

)]
,

[
exp

(
i

2
βτ3

)])
: α, β ∈ R

}
.

Hence∂(M1, γ) ∼= G/T 2 ∼= S2× S2. �

Remark 3.5. The identification∂(M1, γ) ∼= S2× S2 is natural in two senses. First, the set
of pointwise limit mapsφ∞ : S2 → S2, obtained by taking theλ →∞ limit of the ([U], λ)

rational map, is naturally in bijective correspondence withS2× S2. To specify such a limit
map one must choose a pointp in the codomain, to which almost every point in the domain
is mapped, and a point in the domain, which alone is mapped to the antipodal point top.

Second, the complex codimension 1 algebraic variety complementary to Rat1 in CP3, as
described inSection 2, is diffeomorphic toS2×S2. Indeed, it is the image of the holomorphic
embeddingCP1× CP1 → CP3, ([x1, x2], [y1, y2]) → [x1y2, x1y1, x2y2, x2y1].
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4. Curvature properties

4.1. Holomorphic sectional curvature

Recall that the sectional curvature of a planeP ∈ Gr2(TW M1) is

σ(X, Y) := 〈R(X, Y)Y, X〉, (4.1)

whereX, Y are orthonormal and spanP , 〈·, ·〉 = γ(·, ·) andR is the Riemann curvature
tensor[38]. Recall also that, sinceγ is Hermitian,γ(X, JX) ≡ 0 and‖JX‖ ≡ ‖X‖, so one
may assign to a lineL ∈ Gr1(TW M1) containingX, ‖X‖ = 1, the holomorphic sectional
curvature

Hol(X) := σ(X, JX). (4.2)

In fact, given thatγ is Kähler, Hol uniquely determinesσ and henceR [13].
We shall compute the holomorphic sectional curvature of the unitary frame{ea, Jea : a =

1, 2, 3} for Vλ, where

e1 = 1√
A1

∂

∂λ1
, e2 = 1√

A1

∂

∂λ2
, e3 = 1√

A1+ λ2A2

∂

∂λ3
. (4.3)

Hermiticity implies that Hol(X) ≡ Hol(JX), andG invariance implies that Hol(e1) ≡
Hol(e2), so we shall calculate only Hol(e1) and Hol(e3). These will vary with basepoint
Wλ ∈ Γ , and hence be functions ofλ.

The simpler of the two is Hol(e3):

Hol(e3)= 4

(1+ λ2)(A1+ λ2A2)2

〈
∇∂/∂λ3∇θ3θ3− ∇θ3∇∂/∂λ3θ3− ∇[∂/∂λ3,θ3]θ3,

∂

∂λ3

〉

= 4

(1+ λ2)(A1+ λ2A2)2

×
{

∂

∂λ3

〈
∇θ3θ3,

∂

∂λ3

〉
−
〈
∇θ3θ3,∇∂/∂λ3

∂

∂λ3

〉
+ ‖∇∂/∂λ3θ3‖2

}

= 1+ λ2

8B2

{(
B′

B
− λ

1+ λ2

)
B′ − B′′

}
. (4.4)

To obtain(4.4), we have used metric compatibility and torsionlessness of∇, left SO(3)
invariance ofγ and the Lie algebra su(2)⊕ R

3, namely,[
∂

∂λa

,
∂

∂λb

]
=
[

∂

∂λa

, θb

]
= 0, [θa, θb] = −εabcθc. (4.5)

Formula(4.4)may be written in terms ofA alone using(3.32), but the result is rather messy.
Due to the more complicated expression forJe1, in comparison withJe3 (see(3.24)),

the calculation of Hol(e1) is considerably lengthier, though no more technically difficult.
We merely record the result, which, unlike Hol(e3), simplifies somewhat when expressed
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Fig. 1. Plots of various curvature functions against the radial coordinateλ for the L2 metric on M1. Note the
unboundedness of Hol(e3) andκ (scalar curvature).

purely in terms ofA:

Hol(e1) = 1

A2Λ2

{
λA+ 1

2Λ2A′

(Λ2+ λ2)A+ λΛ2A′

(
λA

Λ2
+ A′

)
− 2+λ2

1+λ2
A− 3+2λ2

2λ
A′
}

.

(4.6)

Substituting formulae(3.31) and (3.33)for A(λ) andB(λ) into(4.4) and (4.6), one obtains
(very complicated) explicit expressions for Hol(e3) and Hol(e1). Plots of these are presented
in Fig. 1. Note that, although Hol(e1) is bounded, Hol(e3) is unbounded above. In fact, one
finds (using Maple, for example) that

lim
λ→∞

Hol(e1) = 1

π
, lim

λ→∞
(logλ)3

λ4
Hol(e3) = 1

4π
, (4.7)

which proves the following theorem.

Theorem 4.1. The holomorphic sectional curvature of(M1, γ) is unbounded above. Hence,
no isometric compactification of(M1, γ) exists, despite its finite volume and diameter.

4.2. Ricci curvature

Recall that the Ricci curvatureρ of a Riemannian manifold is the symmetric (0, 2) tensor

ρ(X, Y) := tr(V �→ R(V, X)Y), (4.8)

whereR is the Riemann curvature tensor, as before[14].

Proposition 4.2. Let γ be a G invariant Kähler metric onM1, determined as in
Proposition 3.1by the functionA. Then the Ricci curvature of(M1, γ) is

ρ = Ā1 dλ · dλ+ Ā2(λ · dλ)2+ Ā3σ · σ + Ā4(λ · σ )2+ Ā5λ · (σ × dλ), (4.9)
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whereĀ1, . . . , Ā5 are functions ofλ only, determined as in(3.7)by the single function

Ā = −2λ(1+ λ2)(A′)2+ (9λ2+ 4)AA′ + λ(1+ λ2)AA′′ + 4A2λ

2λA(A+ 2λ2A+ λA′ + λ3A′)
. (4.10)

Proof. Since theG action is isometric,ρ is G invariant. Furthermore, sinceγ is Käh-
ler, ρ(JX, JY) ≡ ρ(X, Y) [15], and the associated Ricci form,ρ̂ is closed[16]. Hence,
Proposition 3.1applies toρ just as it applies toγ, and all the coefficient functions are deter-
mined byρλ(∂/∂λ1, ∂/∂λ1) = Ā(λ). But ρλ(∂/∂λ1, ∂/∂λ1) is determined byA according
to Eq. (4.8), which yields formula(4.10). �

As with the metric, it is convenient to define the associated coefficient function

B̄(λ) := ρλ(θ3, θ3) = Ā3+ λ2Ā4 = 1+ 2λ2

4
Ā(λ)+ λ+ λ3

4
Ā′(λ). (4.11)

An explicit formula for the Ricci curvature of theL2 metric is obtained by substituting(3.31)
into (4.10). Unfortunately, this formula is far too complicated to be instructive. However, it
leads us to the following conjecture.

Conjecture 4.3. The Ricci curvature of theL2 metric onM1 is positive definite.

In support of this, note that, relative to the ordered basis(∂/∂λ1, θ2, ∂/∂λ2, θ1, ∂/∂λ3, θ3),
the coefficient matrix ofρλ is block diagonal with blocks

Ā




1 −λ

2

−λ

2

1+ 2λ2

4


 , Ā




1
λ

2

λ

2

1+ 2λ2

4


 , B̄




4

1+ λ2
0

0 1


 , (4.12)

whence it follows thatρλ is positive definite if and only if̄A(λ) > 0 andB̄(λ) > 0. Now
Ā(0) = 4 andB̄(0) = 1, soρ is certainly positive definite in a neighbourhood of Id, and

lim
λ→∞

λ2Ā(λ) = 4, lim
λ→∞

(logλ)2B̄(λ) = 1
8, (4.13)

soρ is asymptotically positive definite also. Convincing graphical evidence in favour of the
conjecture is presented inFig. 2, which contains plots of̄A andB̄.

We note in passing that the Einstein field equations forG invariant Kähler metrics

ρ = 1
6(κ)γ (4.14)

reduce to a single second order nonlinear ODE, explicit solutions to which may be con-
structed in the Ricci flat case. The results will be described in detail elsewhere.

4.3. Scalar curvature

While Hol andρ are not directly relevant to soliton dynamics, the scalar curvatureκ

certainly is, at least in the quantum regime. The standard approach to low energy quantum
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Fig. 2. Plots of the coefficient functions of the Ricci curvature ofγ: (a)Ā(λ) and (b)B̄(λ). Note that both are positive
within the plot domain, and that forλ ≥ 4, they are very close to the asymptotic forms 4λ−2 and [(logλ)−2]/8,
respectively (the dashed curves).

n-soliton dynamics[8] is to assume that the quantum state is well described by a wavefunc-
tion on then-soliton moduli spaceψ : Mn → C (which receives the usual probabilistic
interpretation) subject to a Schrödinger equation of the form

i
∂ψ

∂t
= −1

2
∆γψ + Vψ, (4.15)

where∆γ is the covariant Laplacian on(Mn, γ) andV : Mn → R is a potential function.
The question of precisely what terms should be included inV is somewhat controversial,
and the answer likely varies according to exact context. However, there seems to be general
agreement that, following De Witt[5], one should include (a positive multiple of)κ in V .
For a recent discussion of this subject, specifically in the context ofσ-models, see[23].
So the relevance ofκ to quantum lump dynamics, as well as simple geometric curiosity,
motivate us to calculate it.

Proposition 4.4. Let γ be a G invariant Kähler metric onM1, determined as in
Proposition 3.1by the functionA(λ). Then the scalar curvature of(M1, γ) is

κ = 4
Ā

A
+ 2

B̄

B
, (4.16)

whereĀ andB are determined byA as in Eqs.(4.10)and (3.32), and B̄ is determined by
Ā as in Eq.(4.11).

Proof. By G invariance,κ is a function ofλ only, so it suffices to compute it atWλ ∈ Γ .
Making use of the unitary frame{ea, Jea : a = 1, 2, 3} and recalling thatρ(JX, JY) ≡
ρ(X, Y), one finds

κ = 2
3∑

a=1

ρ(ea, ea) = 2

[
2

Ā1

A1
+ Ā1+ λ2Ā2

A1+ λ2A2

]
, (4.17)
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in the notation ofProposition 4.2. Formula(4.16)follows from applying the relations(3.25),
(3.32), (4.11)–(4.17). �

Corollary 4.5. The scalar curvature of theL2 metric onM1 is unbounded above.

Proof. FromEqs. (3.31) and (3.33)one has the limits

lim
λ→∞

λ2A(λ) = π, lim
λ→∞

λ4

logλ
B(λ) = π

2
, (4.18)

which together with(4.13)andProposition 4.4imply that

lim
λ→∞

(logλ)3

λ4
κ(λ) = 1

2π
. � (4.19)

Remark 4.6. Numerical evidence suggests that theL2 metric on M1 has strictly positive
scalar curvature (seeFig. 1), as one would expect, givenConjecture 4.3.

Since(M1, γ) is noncompact, but of finite volume, the question of what boundary con-
ditions to impose on the quantum wavefunctionψ at λ = ∞ when seeking bound states is
nontrivial. The fact thatκ →∞ asλ →∞ supports the imposition of vanishing boundary
conditions for all quantum states of finite energy. One would expect the quantum 1-lump
energy spectrum to be discrete, therefore.

4.4. The Fubini–Study metric

There is another natural Kähler metric on M1 given by the open inclusion M1 ⊂ CP3,
namely the Fubini–Study metric onCP3. In terms of the local inhomogeneous coordinates
b1, b2, b3 (3.23)this takes the form[39]

γFS= (1+∑ |ba|2)(1+∑dbb dbb)− (
∑

b̄a dba)(
∑

bb dbb)

(1+∑ |ba|2)2
. (4.20)

Proposition 4.7. The Fubini–Study metric onM1 is

γFS= A1 dλ · dλ+ A2(λ · dλ)2+ A3σ · σ + A4(λ · σ )2+ A5λ · (σ × dλ),

A1, . . . , A5 being determined as in(3.7)by the single function

AFS(λ) = 2µ(λ)

1+ µ(λ)2
, (4.21)

whereµ(λ) = (
√

1+ λ2+ λ)2.

Proof. The isometric action of PU(4) on(CP3, γFS) obtained by projecting the standard
U(4) action onC4 contains theG0 action on M1 we have been considering. Furthermore,γFS
is manifestly invariant underM �→ M̄ (i.e. ba �→ b̄a) from (4.20). HenceProposition 3.1
applies. It remains to computeAFS(λ) = γFS(∂/∂λ1, ∂/∂λ1) atWλ ∈ Γ , using(4.20), which
is straightforward algebra. �
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Proposition 4.7gives us several checks on our curvature calculations. It is known that
(CP3, γFS) has constant holomorphic sectional curvature (i.e. Hol(X) is independent of
bothX ∈ TpCP3 and base pointp), and is Einstein[39]. So substituting(4.21)into (4.4),
(4.6) and (4.16)should yield constants. This is easily checked. One finds,

HolFS(e1) ≡ HolFS(e3) ≡ 4, κFS≡ 48. (4.22)

Also, substituting(4.21)into (4.10)demonstrates that̄AFS= 8AFS, as it should. This gives
us considerable confidence in the somewhat complicated expressions for Hol,ρ andκ.

5. Hamiltonian flows

The Kähler formΩ is a closed 2-form, nondegenerate by nondegeneracy ofγ, and hence
a natural symplectic form on M1. Associated with any smooth functionH : M1 → R there
is a Hamiltonian flow, defined as the flow along the smooth vector fieldXH defined such
that

Ω(Y, XH ) = dH(Y) (5.1)

for all vector fieldsY . Thinking of M1 as the 1-lump moduli space, only SO(3) × SO(3)

invariant Hamiltonians make physical sense, soH must be a function ofλ only.

Proposition 5.1. LetΩ be the Kähler form associated with aG invariant Kähler metric on
M1, determined as inProposition 3.1byA(λ), andH(λ) be a smooth, G invariant function
onM1. The Hamiltonian vector field corresponding to(Ω, H) is

XH = 2
√

1+ λ2H ′(λ)

(1+ 2λ2)A(λ)+ (λ+ λ3)A′(λ)
λ̂ · θ . (5.2)

Proof. It is convenient to decompose vector fields relative to the moving frame
{∂/∂λ1, . . . , θ3} using the notation

Y = Y · ∂

∂λ
+ Ỹ · θ , (5.3)

that is, collecting the coefficients into a pair ofR
3-vector valued functions. Recall from the

proof ofProposition 3.1that the Kähler form is

Ω = Â1(dλ · σ − σ · dλ)+ Â2(λ · dλ) ∧ (λ · σ )+ Â1λ · (σ × σ ), (5.4)

so the defining equation for the Hamiltonian vector fieldXH = X · ∂/∂λ+ X̃ · θ reads

Â1(Y · X̃ − Ỹ · X)+ Â2[(λ · Y)(λ · X̃)− (λ · Ỹ)(λ · X)] + Â1λ · (Ỹ × X̃)

= H ′

λ
λ · Y ∀Y ⇒ Â1X + Â2(λ · X)λ+ Â1λ× X̃ = 0, (5.5)

Â1X̃ + Â2(λ · X̃)λ− H ′

λ
λ = 0. (5.6)
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The pair(5.5) and (5.6)is easily solved forX, X̃, yielding

XH = H ′

Â1+ λ2Â2
λ̂ · θ . (5.7)

One now uses(3.7) and (3.27)to rewriteÂ1 andÂ2 in terms ofA. �

Flow alongXH corresponds physically to a lump which maintains constant shapeλ and
position−λ̂, while spinning internally at constant speed about its axis. The variation of spin
speed and sense withλ depends on the specifics ofH(λ).

6. The space of harmonic mapsRP 2 → RP 2

We begin by recalling some relevant results of Eells and Lemaire[6]. The homotopy
classes of continuous mapsφ : RP2 → RP2 fall into distinct families labelled by the
induced endomorphism of the fundamental group,φ∗ : π1(RP2) → π1(RP2). Since
π1(RP2) = Z2, there are two families, one for whichφ∗ is the zero morphism (φ maps all
loops to contractible loops), the other whereφ∗ is the identity morphism (φ maps noncon-
tractible loops to noncontractible loops). The zero morphism family contains two classes,
one of which is the trivial class. The identity morphism family contains infinitely many
classes. Any map in this family lifts tõφ : S2 → S2,

(6.1)

whereπ denotes the covering projection, and the different classes are distinguished by the
absolute value of the degree ofφ̃, which may take anyodd value. We shall refer to this
homotopy invariant as the absolute degree|deg| of φ.

Turning to harmonic maps, all but one of the homotopy classes described above contain
harmonic representatives. Again following[6], if φ belongs to the zero morphism family,
it lifts to a map φ̄ : RP2 → S2 which is also harmonic since the covering projection
π : S2 → RP2 is a local isometry. All harmonic maps fromRP2 to S2 are constant, so
the nontrivial class has no harmonic representative. The moduli space of harmonic maps in
the trivial class is thusRP2, and theL2 metric on this space is a constant multiple of the
canonical metric. Ifφ is harmonic and belongs to the identity morphism family, it lifts to a
harmonic map̃φ : S2 → S2 (again, becauseπ is a local isometry), and the space of these is
well understood in terms of rational maps. So the task is to identify those harmonic maps
φ̃ : S2 → S2 which factor through the quotient in(6.1). Let p : S2 → S2 be the antipodal
map (p : z �→ −1/z̄ in stereographic coordinates). Thenφ̃ projects to a well-defined map
φ : RP2 → RP2 if and only if φ̃ ◦ p = p ◦ φ̃, or in terms of the associated rational map
W(z),

[W(z)]−1 = W(z̄−1). (6.2)
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We now note that given such a rational map, of degreen > 0 say, no other degreen map
projects to the sameφ, althoughW(−1/z̄), which has degree−n, does. So we may identify
M̃n, the moduli space of|deg| n harmonic mapsRP2 → RP2, with the subset of Mn on
which (6.2)holds.

Theorem 6.1. M̃n, wheren ≥ 1 is odd, is a totally geodesic Lagrangian submanifold of
(Mn, γ, Ω).

Proof. Let P : Mn → Mn such that

P : φ̃ �→ p ◦ φ̃ ◦ p. (6.3)

ThenM̃n ⊂ Mn is precisely the fixed point set ofP. SinceP is an isometry of(Mn, γ), in the
componentSO(3)×SO(3), M̃n is totally geodesic if it is a submanifold (i.e. nonsingular).
ExtendingP naturally toCP2n+1, one finds that

P : [a1, . . . , an+1, an+2, . . . , a2n+2]

�→ [(−1)nā2n+2, (−1)n−1ā2n+1, . . . ,−ān+3, ān+2, (−1)n+1ān+1,

(−1)nān, . . . , ā2,−ā1], (6.4)

which is manifestly antiholomorphic. HenceP∗Ω = −Ω, and the Kähler (symplectic) form
restricts to 0 on the fixed point set. SoM̃n is a Lagrangian submanifold if it is nonsingular
and has (real) dimension 2n+ 1.

It remains to check that̃Mn is indeed nonsingular and has half the dimension of Mn. A
short calculation in inhomogeneous coordinates demonstrates that the fixed point set ofP
in CP2n+1 is smooth with real dimension 2n+ 1 if n is odd, and is empty ifn is even (the
latter being a special case of the topological fact that no even degree mapS2 → S2 projects
to a mapRP2 → RP2 in (6.1)). This does not suffice for our purposes, however, since a
real codimension 2 algebraic variety must be removed fromCP2n+1 to yield Mn. We must
verify, therefore, that the intersection ofM̃n with this singular set has dimension lower than
2n+ 1.

Since the question is local, we may work in a neighbourhood of any fixed mapφ̃,
and choose stereographic coordinates on the codomain which are projected from neither
φ̃((0, 0, 1)) nor φ̃((0, 0,−1)). Then, in a sufficiently small neighbourhood, all harmonic
maps have rational form

W(z) = µ
(z− z1) · · · (z− zn)

(z− w1) · · · (z− wn)
, (6.5)

whereµ ∈ C
×. These should be thought of as parameterized byµ and a pair ofunordered

n-tuples of complex numbers{wi}, {zi} ∈ C
n/Pn, Pn being the permutation group on

n objects. Of course, in this contextC
n/Pm

∼= C
n diffeomorphically through the global

coordinates{ai}, where(z− z1) · · · (z− zn) =: zn + anzn−1+ · · · + a1. The singular set,
on which degW < n, is that piece where{wi} ∩ {zi} �= ∅. The fixed point set ofP in this
neighbourhood consists of maps for which

{z1, . . . , zn} =
{
− 1

w̄1
, . . . ,− 1

w̄n

}
, (6.6)
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and

|µ| = |w1w2 · · ·wn|. (6.7)

Eqs. (6.6) and (6.7)determine a (2n + 1)-dimensional submanifold ofC× × [Cn/Pn] ×
[Cn/Pn], parameterized by{wi} ∈ [C×]n/Pn and argµ ∈ S1. From this must be excluded,
if n ≥ 3, the (2n − 3)-dimensional variety on whichwi = −1/w̄j for somei, j. This still
leaves a nonsingular (2n+ 1)-dimensional fixed point set, as was to be proved. �

Note thatP is also an antiholomorphic isometry ofγFS, the Fubini–Study metric inherited
from the open inclusion Mn ⊂ CP2n+1. SoM̃n is a totally geodesic Lagrangian submanifold
of (Mn, γFS, ΩFS) also, by identical reasoning. The metric induced onM̃n by γ is more
interesting than that induced byγFS, however, since it coincides with theL2 metric onM̃n.
The geodesic approximation toRP2 lump dynamics onRP2 is thus a special case ofS2

lump dynamics onS2.
It is clear from the proof above that̃Mn is generically noncompact. The casen = 1

is exceptional, however. Here, as described inSection 3, one may identify a rational map
with a projective equivalence class [M] of GL(2, C) matrices. Let [M] be a fixed point of
P : PL(2, C) → PL(2, C). Then

P :

[(
a11 a12

a21 a22

)]
�→
[(

−ā22 ā21

ā12 −ā11

)]
=
[(

a11 a12

a21 a22

)]
. (6.8)

So there existsξ ∈ C
× such that

a11 = −ξā22, a12 = ξā21, a21 = ξā12, a22 = −ξā11, (6.9)

whence it follows that|ξ| = 1. But then

MM† =
( |a11|2+ |a12|2 a11ā21+ a12ā22

a21ā11+ a22ā12 |a21|2+ |a22|2
)
= (|a11|2+ |a12|2)I2, (6.10)

so [M] ∈ PU(2) ∼= SO(3). HenceM̃1 consists of the rotation orbit of Id:z �→ z, and the
induced metric̃γ onM̃1 is

γ̃ = A3(0)σ · σ , (6.11)

the standard bi-invariant metric on SO(3), up to a constant factor. Eachφ ∈ M̃1 has com-
pletely uniform energy density, so it is rather misleading to call these solutions “RP2

lumps”.
For highern the possibilities are more varied. For example, the energy density of [z �→

zn] ∈ M̃n, n ≥ 3, is concentrated in a symmetric band centred on a (projected) great circle
onRP2, the band being narrower for largern. Considering rational maps of the form(6.5),
with parameters satisfying(6.6) and (6.7), a sharp lump-like structure may be induced by
arranging that one of the poles ofW be close to one of the zeroes, for example by choosing
w2 close to−1/w̄1, while keeping the other poles and zeroes well separated. Since lumps
are associated with close pole-zeropairs, and the poles determine the zeroes (they must
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be antipodal), forφ ∈ M̃n at most(n − 1)/2 distinct lumps in the energy distribution are
possible.

The origin of the noncompactness ofM̃n, n ≥ 3, is that whenw2 → −1/w̄1, say, the
degree of̃φ drops by 2, that is a lump (or, in the lifted picture, an antipodal pair of lumps)
forms, collapses to an infinitely sharp spike and disappears. In fact, there are geodesics
with respect tõγ which reach such singularities in finite time. We conclude this section by
establishing the following theorem.

Theorem 6.2. For all n ≥ 3, (M̃n, γ̃) is geodesically incomplete.

Proof. It suffices[17] to exhibit a curve of finite length which converges to infinity, that is,
escapes every compact subset ofM̃n. Consider the curveΓ : [1/2, 1) ) ρ �→ Wρ ∈ M̃n,
where

Wρ(z) = ρzn−2 (z+ 1)(z− ρ−1)

(z− 1)(z+ ρ)
, (6.12)

which certainly converges to infinity (asρ → 1). The induced metric onΓ is γ̃Γ = f(ρ) dρ2,
where

f(ρ) =
∫
C

dz dz̄

(1+ |z|2)2

1

(1+ |Wρ|2)2

∣∣∣∣∂Wρ

∂ρ

∣∣∣∣
2

. (6.13)

We now appeal to a technical lemma whose proof is postponed toAppendix A.

Lemma 6.3. There existC > 0 andρ∗ ∈ (0, 1) such that for allρ ∈ (ρ∗, 1),

f(ρ) < C

[
1+ log

(
1

1− ρ

)]
.

Hence, the length ofΓ

∫ 1

1/2
dρ
√

f(ρ) < C

[
1+

∫ 1

ρ∗
dρ

√
1+ log

(
1

1− ρ

)]
(6.14)

is finite. �

Note that this result does not follow directly from the results of Sadun and Speight[29]
previously mentioned (incompleteness of Mn), although the method of proof is similar.
Recall that geodesic flow on(M̃n, γ̃) is conjectured to approximate closely the low energy
dynamics of theRP2 σ-model on space–timeRP2 × R. So the geodesic approximation
predicts thatRP2 lumps onRP2 may collapse and form singularities in finite time, just as it
does forS2 lumps on any compact Riemann surface. In fact, little is known about singularity
formation in the full (2+1)-dimensional system, although there is some numerical evidence
in favour of lump collapse[21,26].
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7. Concluding remarks

One could hope to generalize the results of this paper in at least two directions. Replacing
the domain 2-sphere by an arbitrary compact Riemann surfaceΣ, one could study theL2

metric on the space Holn(Σ) of degreen (anti)holomorphic mapsΣ → S2. If nonempty,
Holn(Σ) is the space ofminimal energydegreen harmonic maps (if empty, for example
Hol±1(T 2) = ∅, there exists no minimal energy degreen harmonic map), which is the space
of most direct interest to physicists, rather than the space ofall harmonic maps. Holn(Σ)

has the structure of a complex algebraic variety, so one would expectTheorem 2.1, the
Kähler property of theL2 metric, to generalize to this situation. (In fact, Holn(Σ) may
not be smooth if|n| ≤ 2 genus(Σ) − 2, but the Kähler property should still hold in the
complement of the singular set.)

As an example, consider Hol2(T 2). It was proved in[33] that Hol2(T 2) is homeomorphic
(in C0 topology) to the complex homogeneous space [PL(2, C) × T 2]/V4, whereV4 is a
certain Viergruppe (finite group of order 4, each element being its own inverse). So Hol2(T 2)

inherits a natural complex structure from the covering space PL(2, C)× T 2, and it suffices
to show that the lift of theL2 metric is Kähler. Explicitly, a point([(

a1 a2

a3 a4

)]
, s

)
∈ PL(2, C)× T 2, (7.1)

is identified with the degree 2 holomorphic map

W(z) = a1℘(z− s)+ a2

a3℘(z− s)+ a4
, (7.2)

where℘ is the Weierstrassp-function. Introducing inhomogeneous coordinates on PL(2, C),
an essentially identical argument to that of the proof ofTheorem 2.1establishes.

Theorem 7.1. TheL2 metricγ onHol2(T 2) is Kähler with respect to the complex structure
induced by the identification with[PL(2, C)× T 2]/V4.

It is interesting to note that(Hol2(T 2), γ), like (M1, γ) has finite diameter, leading one
to expect thatTheorem 3.3should generalize to(Holn(Σ), γ) also.

The second natural generalization would be to replace the codomainS2 ∼= CP1 by
a general projective space,CPN . Lemaire and Wood[19] have shown that the space of
degreen, energy 4πE harmonic mapsS2 → CP2, Harmn,E(CP2) is, in Cj topology
(j ≥ 2), a disjoint union of smooth manifolds indexed by total ramification index. Further,
there is an explicit identification between each smooth component of Harmn,E(CP2) and
an appropriate space of linearly full holomorphic mapsS2 → CP2 of fixed degree and
ramification index. So again one has a natural complex structure on the moduli space, and
again one would expect theL2 metric to be Kähler with respect to this structure. It is even
possible that the Kähler property of theL2 metric may persist when the codomain itself
is not Kähler. Bolton and Woodward[3] have conjectured that HarmE(S2m), the space
of energy 4πE harmonic mapsS2 → S2m, is a complex algebraic variety (of dimension
2E+m2). If true, it would be natural to ask again whetherγ is Kähler, at least on the smooth
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part of HarmE(S2m). Note that both these generalizations lie beyond the scope of Ruback’s
formal argument[28].
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Appendix A. Proofs of Lemmas 2.2 and 6.3

Proof of Lemma 2.2. Since F : X × (−ε, ε) → R is smooth, its partial deri-
vative with respect to the second entry,F2 is continuous. Hence the restrictioñF2 :
X × [0, x] → R, 0 < x < ε, is integrable (its domain is compact). Thus, by the Fubini
theorem[4]∫

X

{∫
[0,x]

F̃2

}
=
∫

[0,x]

{∫
X

F̃2

}
.

But
∫

[0,x] F̃2 ≡ F(·, x) − F(·, 0), so the left-hand side isf(x) − f(0). Hence, by the
fundamental theorem of calculus

f ′(0) =
{∫

X

F̃2

}∣∣∣∣
x=0

=
∫

X

F2(·, 0). �

Proof of Lemma 6.3. From(6.12) and (6.13)one finds that

f(ρ) =
∫
C

dz dz̄ F(z, ρ),

where

F(z, ρ) = |1+ z2|2
(1+ |z|2)2

|z|2(n−2)|z+ 1|2|z− 1|2
(|z+ ρ|2|z− 1|2+ |ρz− 1|2|z+ 1|2|z|2(n−2))2

.

Fix ε ∈ (0, 1/2), and assume thatρ is close to 1, that is 0< ρ − 1 < ε. ThenF(·, ρ) may
be bounded independent ofρ except on the union of disksDε(−1) ∪Dε(1), where one or
other of the terms in the denominator may vanish (hereDr(z0) = {z ∈ C : |z− z0| < r}).
We shall denote positive constants (independent ofz andρ) by C1, C2, etc. OnDε(−1)

there existsC1 such that

F(z, ρ) <
C1|z+ 1|2

(|z+ ρ|2+ αρ2|z+ 1|2)2
,
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whereα = (1− ε)2(n−2) < 1. Hence, definingr eiθ := z+ 1,∫
Dε(−1)

dz dz̄ F(z, ρ)

< C1

∫ 2π

0
dθ

∫ ε

0
dr

r3

[(1+ αρ2)r2− 2(1− ρ) cosθr + (1− ρ)2]2

< C2

∫ 1

0
dr

r3

[(3/2)r2− 2(1− ρ)r + (1− ρ)2]2
,

providedρ > (2α)−1/2 ∈ (0, 1). Then, rescalingr �→ r/(1− ρ), one finds that

∫
Dε(−1)

dz dz̄ F(z, ρ) < C2

∫ (1−ρ)−1

0
dr

r3

[(3/2)r2− 2r2+ 1]2

< C3+ C4

∫ (1−ρ)−1

1

dr

r
< C5[1− log(1− ρ)].

Noting thatρ > (2α)−1/2 implies 1+ αρ2 > 3α/2, one finds a similar estimate for the
contribution fromDε(1):∫

Dε(1)

dz dz̄ F(z, ρ) < C6

∫
Dε(1)

dz dz̄
|z− 1|2

(|z− 1|2+ α|ρz− 1|2)2

< C7

∫ 1

0
dr

r3

[(1+ αρ2)r2− 2αρ(1− ρ)r + α(1− ρ)2]2

< C8

∫ (1−ρ)−1

0
dr

r3

[(3/2)r2− 2r + 1]2
< C9[1− log(1− ρ)].

SinceF is bounded independent ofρ onU = C\[Dε(−1) ∪Dε(1)],∫
U

dz dz̄ F(z, ρ) < C10+ C11

∫ ∞

1

dr

r2n−1
< C12.

DefiningC = C5+ C9+ C12 > 0 andρ∗ = (2α)−1/2 ∈ (0, 1), the lemma is proved. �
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